These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 17577745)

  • 41. Formation of free acetaldehydes derived from lipid peroxidation in U937 monocyte-like cells.
    Pospíšil P; Prasad A; Belková J; Manoharan RR; Sedlářová M
    Biochim Biophys Acta Gen Subj; 2024 Feb; 1868(2):130527. PubMed ID: 38043915
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Estimation of lipid peroxidation of live cells using a fluorescent probe, diphenyl-1-pyrenylphosphine.
    Takahashi M; Shibata M; Niki E
    Free Radic Biol Med; 2001 Jul; 31(2):164-74. PubMed ID: 11440828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Macrophage populations of different origins have distinct susceptibilities to lipid peroxidation induced by beta-haematin (malaria pigment).
    Omodeo-Salè F; Basilico N; Folini M; Olliaro P; Taramelli D
    FEBS Lett; 1998 Aug; 433(3):215-8. PubMed ID: 9744797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Continuous measurement of oxygen consumption by linoleic acid membranes exposed to free radicals generated by gamma-radiation.
    Hicks M; Gebicki JM
    Int J Radiat Biol; 1993 Aug; 64(2):143-8. PubMed ID: 8103536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Apparent antibacterial activity of catalase: role of lipid hydroperoxide contamination.
    Kono Y
    J Biochem; 1995 Jan; 117(1):42-6. PubMed ID: 7775397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane proteins are critical targets in free radical mediated cytolysis.
    Richards DM; Dean RT; Jessup W
    Biochim Biophys Acta; 1988 Dec; 946(2):281-8. PubMed ID: 3207745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Peroxyl Radicals on the Structural Characteristics and Fatty Acid Composition of High-Density Lipoprotein from Duck Egg Yolk.
    Sun J; Zeng Q; Yang X; Pi J; Ma M; Du J
    Foods; 2022 Jun; 11(11):. PubMed ID: 35681384
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An improved spectrophotometric triiodide assay for lipid hydroperoxides.
    Darrow RA; Organisciak DT
    Lipids; 1994 Aug; 29(8):591-4. PubMed ID: 7990667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Macrophages: Preventing lipid overload.
    Bird L
    Nat Rev Immunol; 2011 Feb; 11(2):73. PubMed ID: 21467974
    [No Abstract]   [Full Text] [Related]  

  • 50. Cysteamine inhibits lysosomal oxidation of low density lipoprotein in human macrophages and reduces atherosclerosis in mice.
    Wen Y; Ahmad F; Mohri Z; Weinberg PD; Leake DS
    Atherosclerosis; 2019 Dec; 291():9-18. PubMed ID: 31629988
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lysosomal oxidation of LDL alters lysosomal pH, induces senescence, and increases secretion of pro-inflammatory cytokines in human macrophages.
    Ahmad F; Leake DS
    J Lipid Res; 2019 Jan; 60(1):98-110. PubMed ID: 30397186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein oxidation and peroxidation.
    Davies MJ
    Biochem J; 2016 Apr; 473(7):805-25. PubMed ID: 27026395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of low extracellular pH on NF-κB activation in macrophages.
    Gerry AB; Leake DS
    Atherosclerosis; 2014 Apr; 233(2):537-544. PubMed ID: 24530961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cooperative induction of CXCL10 involves NADPH oxidase: Implications for HIV dementia.
    Williams R; Yao H; Peng F; Yang Y; Bethel-Brown C; Buch S
    Glia; 2010 Apr; 58(5):611-21. PubMed ID: 19941336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential to inhibit growth of atherosclerotic plaque development through modulation of macrophage neopterin/7,8-dihydroneopterin synthesis.
    Gieseg SP; Crone EM; Flavall EA; Amit Z
    Br J Pharmacol; 2008 Feb; 153(4):627-35. PubMed ID: 17700723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipid oxidation predominates over protein hydroperoxide formation in human monocyte-derived macrophages exposed to aqueous peroxyl radicals.
    Firth CA; Yang YT; Gieseg SP
    Free Radic Res; 2007 Jul; 41(7):839-48. PubMed ID: 17577745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein and thiol oxidation in cells exposed to peroxyl radicals is inhibited by the macrophage synthesised pterin 7,8-dihydroneopterin.
    Duggan S; Rait C; Platt A; Gieseg S
    Biochim Biophys Acta; 2002 Aug; 1591(1-3):139-145. PubMed ID: 12183064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein hydroperoxides are a major product of low density lipoprotein oxidation during copper, peroxyl radical and macrophage-mediated oxidation.
    Gieseg SP; Pearson J; Firth CA
    Free Radic Res; 2003 Sep; 37(9):983-91. PubMed ID: 14670006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Macrophage mediated protein hydroperoxide formation and lipid oxidation in low density lipoprotein are inhibited by the inflammation marker 7,8-dihydroneopterin.
    Firth CA; Crone EM; Flavall EA; Roake JA; Gieseg SP
    Biochim Biophys Acta; 2008 Jun; 1783(6):1095-101. PubMed ID: 18342632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid peroxidation during the oxidation of haemoproteins by hydroperoxides. Relation to electronically excited state formation.
    Cadenas E
    J Biolumin Chemilumin; 1989 Jul; 4(1):208-18. PubMed ID: 2678914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.