These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17577913)

  • 1. Tryptophan-to-dye fluorescence energy transfer applied to oxygen sensing by using type-3 copper proteins.
    Zauner G; Lonardi E; Bubacco L; Aartsma TJ; Canters GW; Tepper AW
    Chemistry; 2007; 13(25):7085-90. PubMed ID: 17577913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence labels as sensors for oxygen binding of arthropod hemocyanins.
    Erker W; Schoen A; Basché T; Decker H
    Biochem Biophys Res Commun; 2004 Nov; 324(2):893-900. PubMed ID: 15474512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen binding to tyrosinase from streptomyces antibioticus studied by laser flash photolysis.
    Hirota S; Kawahara T; Lonardi E; de Waal E; Funasaki N; Canters GW
    J Am Chem Soc; 2005 Dec; 127(51):17966-7. PubMed ID: 16366523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between the type-3 copper protein tyrosinase and the substrate analogue p-nitrophenol studied by NMR.
    Tepper AW; Bubacco L; Canters GW
    J Am Chem Soc; 2005 Jan; 127(2):567-75. PubMed ID: 15643881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous noncompetitive assay of protein via Förster-resonance-energy-transfer with tryptophan residue(s) as intrinsic donor(s) and fluorescent ligand as acceptor.
    Liao F; Xie Y; Yang X; Deng P; Chen Y; Xie G; Zhu S; Liu B; Yuan H; Liao J; Zhao Y; Yu M
    Biosens Bioelectron; 2009 Sep; 25(1):112-7. PubMed ID: 19586766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence energy transfer studies of human deoxycytidine kinase: role of cysteine 185 in the conformational changes that occur upon substrate binding.
    Mani RS; Usova EV; Cass CE; Eriksson S
    Biochemistry; 2006 Mar; 45(11):3534-41. PubMed ID: 16533034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan and tyrosine to terbium fluorescence resonance energy transfer as a method to "map" aromatic residues and monitor docking.
    Allen JE; McLendon GL
    Biochem Biophys Res Commun; 2006 Nov; 349(4):1264-8. PubMed ID: 16979582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain-specific fluorescence resonance energy transfer (FRET) sensors of metallothionein/thionein.
    Hong SH; Hao Q; Maret W
    Protein Eng Des Sel; 2005 Jun; 18(6):255-63. PubMed ID: 15911539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state fluorescence quenching applications for studying protein structure and dynamics.
    Mátyus L; Szöllosi J; Jenei A
    J Photochem Photobiol B; 2006 Jun; 83(3):223-36. PubMed ID: 16488620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching.
    Iijima I; Hohsaka T
    Chembiochem; 2009 Apr; 10(6):999-1006. PubMed ID: 19301314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays.
    Rantanen T; Päkkilä H; Jämsen L; Kuningas K; Ukonaho T; Lövgren T; Soukka T
    Anal Chem; 2007 Aug; 79(16):6312-8. PubMed ID: 17628044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping tyrosinase key active intermediate under turnover.
    Spada A; Palavicini S; Monzani E; Bubacco L; Casella L
    Dalton Trans; 2009 Sep; (33):6468-71. PubMed ID: 19672489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent sensor for Cu2+ with a tunable emission wavelength.
    Mokhir A; Kiel A; Herten DP; Kraemer R
    Inorg Chem; 2005 Aug; 44(16):5661-6. PubMed ID: 16060616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Förster-resonance-energy transfer-based method for fluorescence detection of the protein redox state.
    Kuznetsova S; Zauner G; Schmauder R; Mayboroda OA; Deelder AM; Aartsma TJ; Canters GW
    Anal Biochem; 2006 Mar; 350(1):52-60. PubMed ID: 16430854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stopped-flow fluorescence studies of inhibitor binding to tyrosinase from Streptomyces antibioticus.
    Tepper AW; Bubacco L; Canters GW
    J Biol Chem; 2004 Apr; 279(14):13425-34. PubMed ID: 14699163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon upconversion in homogeneous fluorescence-based bioanalytical assays.
    Soukka T; Rantanen T; Kuningas K
    Ann N Y Acad Sci; 2008; 1130():188-200. PubMed ID: 18596348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oxidation state of a protein observed molecule-by-molecule.
    Schmauder R; Librizzi F; Canters GW; Schmidt T; Aartsma TJ
    Chemphyschem; 2005 Jul; 6(7):1381-6. PubMed ID: 15991272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of single oxygen molecules with fluorescence-labeled hemocyanins.
    Erker W; Sdorra S; Basché T
    J Am Chem Soc; 2005 Oct; 127(42):14532-3. PubMed ID: 16231880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer.
    Wlodarczyk J; Kierdaszuk B
    Biophys Chem; 2006 Sep; 123(2-3):146-53. PubMed ID: 16765509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays.
    Peng X; Chen H; Draney DR; Volcheck W; Schutz-Geschwender A; Olive DM
    Anal Biochem; 2009 May; 388(2):220-8. PubMed ID: 19248753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.