BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17578112)

  • 1. Measuring material softening with nanoscale spatial resolution using heated silicon probes.
    Nelson BA; King WP
    Rev Sci Instrum; 2007 Feb; 78(2):023702. PubMed ID: 17578112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glass transitions in nanoscale heated volumes of thin polystyrene films.
    Li AG; Burggraf LW
    Rev Sci Instrum; 2010 Dec; 81(12):123707. PubMed ID: 21198032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of local thermal analysis of polymers on the sub-micrometer scale using heated scanning probe microscopy cantilevers.
    Fischinger TJ; Laher M; Hild S
    J Phys Chem B; 2014 May; 118(20):5570-6. PubMed ID: 24654598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale thermal-mechanical probe determination of 'softening transitions' in thin polymer films.
    Zhou J; Berry B; Douglas JF; Karim A; Snyder CR; Soles C
    Nanotechnology; 2008 Dec; 19(49):495703. PubMed ID: 21730683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe.
    Laraoui A; Aycock-Rizzo H; Gao Y; Lu X; Riedo E; Meriles CA
    Nat Commun; 2015 Nov; 6():8954. PubMed ID: 26584676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale characterisation and imaging of partially amorphous materials using local thermomechanical analysis and heated tip AFM.
    Harding L; King WP; Dai X; Craig DQ; Reading M
    Pharm Res; 2007 Nov; 24(11):2048-54. PubMed ID: 17554606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of atomic force microscopy tip and sample thermal contact.
    Umatova Z; Zhang Y; Rajkumar R; Dobson PS; Weaver JMR
    Rev Sci Instrum; 2019 Sep; 90(9):095003. PubMed ID: 31575264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano/Microscale Thermal Field Distribution: Conducting Thermal Decomposition of Pyrolytic-Type Polymer by Heated AFM Probes.
    Li B; Geng Y; Yan Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32156045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale thermal AFM of polymers: transient heat flow effects.
    Duvigneau J; Schönherr H; Vancso GJ
    ACS Nano; 2010 Nov; 4(11):6932-40. PubMed ID: 20979371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focused electron-beam-induced deposition for fabrication of highly durable and sensitive metallic AFM-IR probes.
    Qian W; Sun S; Song J; Nguyen C; Ducharme S; Turner JA
    Nanotechnology; 2018 Aug; 29(33):335702. PubMed ID: 29790858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric voltage at a nanometer-scale heated tip point contact.
    Fletcher PC; Lee B; King WP
    Nanotechnology; 2012 Jan; 23(3):035401. PubMed ID: 22173299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A noncontact thermal microprobe for local thermal conductivity measurement.
    Zhang Y; Castillo EE; Mehta RJ; Ramanath G; Borca-Tasciuc T
    Rev Sci Instrum; 2011 Feb; 82(2):024902. PubMed ID: 21361625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes.
    Liu J; Grierson DS; Moldovan N; Notbohm J; Li S; Jaroenapibal P; O'Connor SD; Sumant AV; Neelakantan N; Carlisle JA; Turner KT; Carpick RW
    Small; 2010 May; 6(10):1140-9. PubMed ID: 20486220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of scanning thermal microscope probe with ultra-thin oxide tip and demonstration of its enhanced performance.
    Chae H; Hwang G; Kwon O
    Ultramicroscopy; 2016 Dec; 171():195-203. PubMed ID: 27694037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Limits of Scanning Thermal Microscopy of Ultrathin Films.
    Metzke C; Frammelsberger W; Weber J; Kühnel F; Zhu K; Lanza M; Benstetter AG
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31978971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal exchange radius measurement: application to nanowire thermal imaging.
    Puyoo E; Grauby S; Rampnoux JM; Rouvière E; Dilhaire S
    Rev Sci Instrum; 2010 Jul; 81(7):073701. PubMed ID: 20687725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct temperature mapping of nanoscale plasmonic devices.
    Desiatov B; Goykhman I; Levy U
    Nano Lett; 2014 Feb; 14(2):648-52. PubMed ID: 24422562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.