BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 17578610)

  • 1. Genome-wide analysis of intronless genes in rice and Arabidopsis.
    Jain M; Khurana P; Tyagi AK; Khurana JP
    Funct Integr Genomics; 2008 Feb; 8(1):69-78. PubMed ID: 17578610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different evolutionary patterns among intronless genes in maize genome.
    Yan H; Zhang W; Lin Y; Dong Q; Peng X; Jiang H; Zhu S; Cheng B
    Biochem Biophys Res Commun; 2014 Jun; 449(1):146-50. PubMed ID: 24820954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families.
    Liu H; Lyu HM; Zhu K; Van de Peer Y; Max Cheng ZM
    Plant J; 2021 Feb; 105(4):1072-1082. PubMed ID: 33217085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic analysis of alternative first exons in plant genomes.
    Chen WH; Lv G; Lv C; Zeng C; Hu S
    BMC Plant Biol; 2007 Oct; 7():55. PubMed ID: 17941993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and evolutionary analyses on expressed intronless genes in the mouse genome.
    Sakharkar KR; Sakharkar MK; Culiat CT; Chow VT; Pervaiz S
    FEBS Lett; 2006 Feb; 580(5):1472-8. PubMed ID: 16469316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding DNA repair and recombination in higher plant genome: information from genome-wide screens in Arabidopsis and rice.
    Singh SK; Choudhury SR; Roy S; Sengupta DN
    Plant Signal Behav; 2011 Jan; 6(1):120-2. PubMed ID: 21270534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of microstructure between a sequenced region of the genome of rice and multiple segments of the genome of Arabidopsis thaliana.
    Mayer K; Murphy G; Tarchini R; Wambutt R; Volckaert G; Pohl T; Düsterhöft A; Stiekema W; Entian KD; Terryn N; Lemcke K; Haase D; Hall CR; van Dodeweerd AM; Tingey SV; Mewes HW; Bevan MW; Bancroft I
    Genome Res; 2001 Jul; 11(7):1167-74. PubMed ID: 11435398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and analysis of homoeologous segments of the genomes of rice and Arabidopsis thaliana.
    van Dodeweerd AM; Hall CR; Bent EG; Johnson SJ; Bevan MW; Bancroft I
    Genome; 1999 Oct; 42(5):887-92. PubMed ID: 10584310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and characterization of microRNAs from rice.
    Sunkar R; Girke T; Jain PK; Zhu JK
    Plant Cell; 2005 May; 17(5):1397-411. PubMed ID: 15805478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence.
    Takuno S; Gaut BS
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1797-802. PubMed ID: 23319627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens.
    Rensing SA; Fritzowsky D; Lang D; Reski R
    BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis.
    Griffiths S; Dunford RP; Coupland G; Laurie DA
    Plant Physiol; 2003 Apr; 131(4):1855-67. PubMed ID: 12692345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA repair and recombination in higher plants: insights from comparative genomics of Arabidopsis and rice.
    Singh SK; Roy S; Choudhury SR; Sengupta DN
    BMC Genomics; 2010 Jul; 11():443. PubMed ID: 20646326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local coexpression domains in the genome of rice show no microsynteny with Arabidopsis domains.
    Ren XY; Stiekema WJ; Nap JP
    Plant Mol Biol; 2007 Sep; 65(1-2):205-17. PubMed ID: 17641976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
    Basu MK; Rogozin IB; Deusch O; Dagan T; Martin W; Koonin EV
    Mol Biol Evol; 2008 Jan; 25(1):111-9. PubMed ID: 17974547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis.
    Li X; Duan X; Jiang H; Sun Y; Tang Y; Yuan Z; Guo J; Liang W; Chen L; Yin J; Ma H; Wang J; Zhang D
    Plant Physiol; 2006 Aug; 141(4):1167-84. PubMed ID: 16896230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice.
    Movahedi S; Van de Peer Y; Vandepoele K
    Plant Physiol; 2011 Jul; 156(3):1316-30. PubMed ID: 21571672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family.
    Zhang S; Chen C; Li L; Meng L; Singh J; Jiang N; Deng XW; He ZH; Lemaux PG
    Plant Physiol; 2005 Nov; 139(3):1107-24. PubMed ID: 16286450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa.
    Arnaud D; Déjardin A; Leplé JC; Lesage-Descauses MC; Pilate G
    DNA Res; 2007 Jun; 14(3):103-16. PubMed ID: 17573466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.