BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17578920)

  • 1. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit.
    Ernst OP; Gramse V; Kolbe M; Hofmann KP; Heck M
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10859-64. PubMed ID: 17578920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transitory complex between photoexcited rhodopsin and transducin. Reciprocal interaction between the retinal site in rhodopsin and the nucleotide site in transducin.
    Bornancin F; Pfister C; Chabre M
    Eur J Biochem; 1989 Oct; 184(3):687-98. PubMed ID: 2509200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The G-protein of retinal rod outer segments (transducin). Mechanism of interaction with rhodopsin and nucleotides.
    Bennett N; Dupont Y
    J Biol Chem; 1985 Apr; 260(7):4156-68. PubMed ID: 3920215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal transfer from GPCRs to G proteins: role of the G alpha N-terminal region in rhodopsin-transducin coupling.
    Herrmann R; Heck M; Henklein P; Hofmann KP; Ernst OP
    J Biol Chem; 2006 Oct; 281(40):30234-41. PubMed ID: 16847064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric behavior in transducin activation mediated by rhodopsin. Initial rate analysis of guanine nucleotide exchange.
    Wessling-Resnick M; Johnson GL
    J Biol Chem; 1987 Mar; 262(8):3697-705. PubMed ID: 3102494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guanine nucleotide binding characteristics of transducin: essential role of rhodopsin for rapid exchange of guanine nucleotides.
    Fawzi AB; Northup JK
    Biochemistry; 1990 Apr; 29(15):3804-12. PubMed ID: 2187531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The receptor-bound "empty pocket" state of the heterotrimeric G-protein alpha-subunit is conformationally dynamic.
    Abdulaev NG; Ngo T; Ramon E; Brabazon DM; Marino JP; Ridge KD
    Biochemistry; 2006 Oct; 45(43):12986-97. PubMed ID: 17059215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of the functional interactions of the beta-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles.
    Cerione RA; Staniszewski C; Benovic JL; Lefkowitz RJ; Caron MG; Gierschik P; Somers R; Spiegel AM; Codina J; Birnbaumer L
    J Biol Chem; 1985 Feb; 260(3):1493-500. PubMed ID: 2981858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex.
    Jastrzebska B; Goc A; Golczak M; Palczewski K
    Biochemistry; 2009 Jun; 48(23):5159-70. PubMed ID: 19413332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of transducin to light-activated rhodopsin prevents transducin interaction with the rod cGMP phosphodiesterase gamma-subunit.
    Artemyev NO
    Biochemistry; 1997 Apr; 36(14):4188-93. PubMed ID: 9100013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism.
    Heck M; Hofmann KP
    J Biol Chem; 2001 Mar; 276(13):10000-9. PubMed ID: 11116153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of transducin with dansyl chloride hinders its binding to light-activated rhodopsin.
    Kosoy A; Möller C; Perdomo D; Bubis J
    J Biochem Mol Biol; 2004 Mar; 37(2):260-7. PubMed ID: 15469705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodopsin-stimulated activation-deactivation cycle of transducin: kinetics of the intrinsic fluorescence response of the alpha subunit.
    Guy PM; Koland JG; Cerione RA
    Biochemistry; 1990 Jul; 29(30):6954-64. PubMed ID: 2223753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of G-protein activation by rhodopsin.
    Shichida Y; Morizumi T
    Photochem Photobiol; 2007; 83(1):70-5. PubMed ID: 16800722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric mechanisms of G protein-Coupled Receptor signaling: a structural perspective.
    Thaker TM; Kaya AI; Preininger AM; Hamm HE; Iverson TM
    Methods Mol Biol; 2012; 796():133-74. PubMed ID: 22052489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligomeric state of rhodopsin within rhodopsin-transducin complex probed with succinylated concanavalin A.
    Jastrzebska B
    Methods Mol Biol; 2015; 1271():221-33. PubMed ID: 25697527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choleratoxin ADP-ribosylates transducin only when it is bound to photoexcited rhodopsin and depleted of its nucleotide.
    Bornancin F; Chabre M
    FEBS Lett; 1991 Oct; 291(2):273-6. PubMed ID: 1936273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling efficiency of rhodopsin and transducin in bicelles.
    Kaya AI; Thaker TM; Preininger AM; Iverson TM; Hamm HE
    Biochemistry; 2011 Apr; 50(15):3193-203. PubMed ID: 21375271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis.
    Herrmann R; Heck M; Henklein P; Kleuss C; Wray V; Hofmann KP; Ernst OP
    Vision Res; 2006 Dec; 46(27):4582-93. PubMed ID: 17011013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dominant-negative Galpha mutant that traps a stable rhodopsin-Galpha-GTP-betagamma complex.
    Ramachandran S; Cerione RA
    J Biol Chem; 2011 Apr; 286(14):12702-11. PubMed ID: 21285355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.