BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17579436)

  • 1. Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems.
    Reddy N; Yang Y
    J Agric Food Chem; 2007 Jul; 55(14):5569-74. PubMed ID: 17579436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural cellulose fibers from soybean straw.
    Reddy N; Yang Y
    Bioresour Technol; 2009 Jul; 100(14):3593-8. PubMed ID: 19345577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems.
    Reddy N; Yang Y
    Bioresour Technol; 2008 May; 99(7):2449-54. PubMed ID: 17583497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks.
    Reddy N; Yang Y
    Bioresour Technol; 2009 Jul; 100(14):3563-9. PubMed ID: 19327987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen.
    Reddy N; Yang Y
    Biotechnol Bioeng; 2007 Aug; 97(5):1021-7. PubMed ID: 17221888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of long natural cellulose fibers from wheat straw.
    Reddy N; Yang Y
    J Agric Food Chem; 2007 Oct; 55(21):8570-5. PubMed ID: 17894459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of high-quality long natural cellulose fibers from rice straw.
    Reddy N; Yang Y
    J Agric Food Chem; 2006 Oct; 54(21):8077-81. PubMed ID: 17032012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulosic fibers with high aspect ratio from cornhusks via controlled swelling and alkaline penetration.
    Ma Z; Pan G; Xu H; Huang Y; Yang Y
    Carbohydr Polym; 2015 Jun; 124():50-6. PubMed ID: 25839793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofibers from agricultural byproducts for industrial applications.
    Reddy N; Yang Y
    Trends Biotechnol; 2005 Jan; 23(1):22-7. PubMed ID: 15629854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of cellulose-II nanospheres from flax stems and their physical and morphological properties.
    Astruc J; Nagalakshmaiah M; Laroche G; Grandbois M; Elkoun S; Robert M
    Carbohydr Polym; 2017 Dec; 178():352-359. PubMed ID: 29050605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior.
    Frisoni G; Baiardo M; Scandola M; Lednická D; Cnockaert MC; Mergaert J; Swings J
    Biomacromolecules; 2001; 2(2):476-82. PubMed ID: 11749209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Similarity between leaves of Nauclea officinalis and stems of Nauclea officinalis].
    Lian YP; Xie DW; Yuan SW; Li YJ; Ding G; Huang WZ; Xiao W
    Zhongguo Zhong Yao Za Zhi; 2015 Nov; 40(22):4433-41. PubMed ID: 27097420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotypic variations in non-structural carbohydrate and cell-wall components of the stem in rice, sorghum, and sugar vane.
    Arai-Sanoh Y; Ida M; Zhao R; Yoshinaga S; Takai T; Ishimaru T; Maeda H; Nishitani K; Terashima Y; Gau M; Kato N; Matsuoka M; Kondo M
    Biosci Biotechnol Biochem; 2011; 75(6):1104-12. PubMed ID: 21670528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization.
    Cherian BM; Pothan LA; Nguyen-Chung T; Mennig G; Kottaisamy M; Thomas S
    J Agric Food Chem; 2008 Jul; 56(14):5617-27. PubMed ID: 18570426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum.
    Yu H; Cong L; Zhu Z; Wang C; Zou J; Tao C; Shi Z; Lu X
    Gene; 2015 Oct; 571(2):221-30. PubMed ID: 26117170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem.
    Jebadurai SG; Raj RE; Sreenivasan VS; Binoj JS
    Carbohydr Polym; 2019 Mar; 207():675-683. PubMed ID: 30600052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L.
    Pinelli P; Ieri F; Vignolini P; Bacci L; Baronti S; Romani A
    J Agric Food Chem; 2008 Oct; 56(19):9127-32. PubMed ID: 18778029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical, mechanical, and spectroscopic analyses of genetically engineered flax fibers producing bioplastic (poly-beta-hydroxybutyrate).
    Wróbel-Kwiatkowska M; Skórkowska-Telichowska K; Dymińska L; Maczka M; Hanuza J; Szopa J
    Biotechnol Prog; 2009; 25(5):1489-98. PubMed ID: 19572280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem.
    Indran S; Raj RE
    Carbohydr Polym; 2015 Mar; 117():392-399. PubMed ID: 25498651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a new natural cellulosic fiber extracted from Derris scandens stem.
    C IP; R S
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2303-2313. PubMed ID: 33091474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.