These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 17579706)

  • 1. Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes.
    Doble N; Miller DT; Yoon G; Williams DR
    Appl Opt; 2007 Jul; 46(20):4501-14. PubMed ID: 17579706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography.
    Chalita MR; Chavala S; Xu M; Krueger RR
    Ophthalmology; 2004 Mar; 111(3):447-53. PubMed ID: 15019317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirements for segmented correctors for diffraction-limited performance in the human eye.
    Miller D; Thibos L; Hong X
    Opt Express; 2005 Jan; 13(1):275-89. PubMed ID: 19488352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions.
    Villegas EA; Artal P
    Optom Vis Sci; 2003 Feb; 80(2):106-14. PubMed ID: 12597325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of wavefront aberrations in rabbit and human eyes.
    Chen L; Huang LC; Gray B; Chernyak DA
    Clin Exp Optom; 2014 Nov; 97(6):534-9. PubMed ID: 25069625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of liquid-crystal adaptive-optics to alter the refractive state of the eye.
    Thibos LN; Bradley A
    Optom Vis Sci; 1997 Jul; 74(7):581-7. PubMed ID: 9293528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision improvement by correcting higher-order aberrations with phase plates in normal eyes.
    Yoon G; Jeong TM; Cox IG; Williams DR
    J Refract Surg; 2004; 20(5):S523-7. PubMed ID: 15523969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monochromatic ocular wavefront aberrations in the awake-behaving cat.
    Huxlin KR; Yoon G; Nagy L; Porter J; Williams D
    Vision Res; 2004; 44(18):2159-69. PubMed ID: 15183683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher-order aberrations in eyes with irregular corneas after laser refractive surgery.
    McCormick GJ; Porter J; Cox IG; MacRae S
    Ophthalmology; 2005 Oct; 112(10):1699-709. PubMed ID: 16095700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavefront aberration of the eye: a review.
    Charman WN
    Optom Vis Sci; 1991 Aug; 68(8):574-83. PubMed ID: 1923333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 1. Methods.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Appl Opt; 2007 Sep; 46(25):6434-41. PubMed ID: 17805384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The statistics of refractive error maps: managing wavefront aberration analysis without Zernike polynomials.
    Iskander DR; Nam J; Thibos LN
    Ophthalmic Physiol Opt; 2009 May; 29(3):292-9. PubMed ID: 19422561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of age, decentration, aberrations and pupil size on subjective image quality with concentric bifocal optics.
    Rio D; Woog K; Legras R
    Ophthalmic Physiol Opt; 2016 Jul; 36(4):411-20. PubMed ID: 27196105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correcting highly aberrated eyes using large-stroke adaptive optics.
    Sabesan R; Ahmad K; Yoon G
    J Refract Surg; 2007 Nov; 23(9):947-52. PubMed ID: 18041252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wave aberration of human eyes and new descriptors of image optical quality and visual performance.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Refract Surg; 2010 Jan; 26(1):52-6. PubMed ID: 20199013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye.
    Wang L; Koch DD
    Arch Ophthalmol; 2005 Sep; 123(9):1226-30. PubMed ID: 16157803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor.
    Pantanelli S; MacRae S; Jeong TM; Yoon G
    Ophthalmology; 2007 Nov; 114(11):2013-21. PubMed ID: 17553566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of the refraction equations for higher-order aberrations of local wavefronts at oblique incidence.
    Esser G; Becken W; Müller W; Baumbach P; Arasa J; Uttenweiler D
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):218-37. PubMed ID: 20126233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.