These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17580076)

  • 1. Invertebrate neurobiology: sensory processing in reverse for backward walking.
    Zill SN
    Curr Biol; 2007 Jun; 17(12):R462-4. PubMed ID: 17580076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurobiology: reconstructing the neural control of leg coordination.
    Zill SN; Keller BR
    Curr Biol; 2009 May; 19(9):R371-3. PubMed ID: 19439260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organizing network action for locomotion: insights from studying insect walking.
    Büschges A; Akay T; Gabriel JP; Schmidt J
    Brain Res Rev; 2008 Jan; 57(1):162-71. PubMed ID: 17888515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of reflex reversal in stick insect walking: effects of intersegmental signals, changes in direction, and optomotor-induced turning.
    Hellekes K; Blincow E; Hoffmann J; Büschges A
    J Neurophysiol; 2012 Jan; 107(1):239-49. PubMed ID: 21994271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact.
    Gruhn M; Hoffmann O; Dübbert M; Scharstein H; Büschges A
    J Neurosci Methods; 2006 Dec; 158(2):195-206. PubMed ID: 16824615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed.
    Rosenbaum P; Schmitz J; Schmidt J; Büschges A
    J Neurophysiol; 2015 Aug; 114(2):1090-101. PubMed ID: 26063769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intersegmental coordination of walking movements in stick insects.
    Ludwar BCh; Göritz ML; Schmidt J
    J Neurophysiol; 2005 Mar; 93(3):1255-65. PubMed ID: 15525808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recruitment in a heterogeneous population of motor neurons that innervates the depressor muscle of the crayfish walking leg muscle.
    Hill AA; Cattaert D
    J Exp Biol; 2008 Feb; 211(Pt 4):613-29. PubMed ID: 18245639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system.
    Akay T; Ludwar BCh; Göritz ML; Schmitz J; Büschges A
    J Neurosci; 2007 Mar; 27(12):3285-94. PubMed ID: 17376989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal control of Drosophila walking direction.
    Bidaye SS; Machacek C; Wu Y; Dickson BJ
    Science; 2014 Apr; 344(6179):97-101. PubMed ID: 24700860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neuromechanical model explaining forward and backward stepping in the stick insect.
    Tóth TI; Knops S; Daun-Gruhn S
    J Neurophysiol; 2012 Jun; 107(12):3267-80. PubMed ID: 22402652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system.
    Borgmann A; Scharstein H; Büschges A
    J Neurophysiol; 2007 Sep; 98(3):1685-96. PubMed ID: 17596420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
    Akay T; Haehn S; Schmitz J; Büschges A
    J Neurophysiol; 2004 Jul; 92(1):42-51. PubMed ID: 14999042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
    Akay T; Büschges A
    J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of leg touchdown for the control of locomotor activity in the walking stick insect.
    Schmitz J; Gruhn M; Büschges A
    J Neurophysiol; 2015 Apr; 113(7):2309-20. PubMed ID: 25652931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking on a 'peg leg': extensor muscle activities and sensory feedback after distal leg denervation in cockroaches.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):217-31. PubMed ID: 14727135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neuromechanical model for the neuronal basis of curve walking in the stick insect.
    Knops S; Tóth TI; Guschlbauer C; Gruhn M; Daun-Gruhn S
    J Neurophysiol; 2013 Feb; 109(3):679-91. PubMed ID: 23136343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor control programs and walking.
    Ivanenko YP; Poppele RE; Lacquaniti F
    Neuroscientist; 2006 Aug; 12(4):339-48. PubMed ID: 16840710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and perceptual responses to backward and forward treadmill walking in water.
    Masumoto K; Hamada A; Tomonaga HO; Kodama K; Amamoto Y; Nishizaki Y; Hotta N
    Gait Posture; 2009 Feb; 29(2):199-203. PubMed ID: 18829319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.