These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. ORENZA: a web resource for studying ORphan ENZyme activities. Lespinet O; Labedan B BMC Bioinformatics; 2006 Oct; 7():436. PubMed ID: 17026747 [TBL] [Abstract][Full Text] [Related]
4. The quest for molecular quasi-species in ligand-activity space and its application to directed enzyme evolution. Mannervik B; Runarsdottir A FEBS Lett; 2010 Jun; 584(12):2565-71. PubMed ID: 20399208 [TBL] [Abstract][Full Text] [Related]
5. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes. Smith AA; Belda E; Viari A; Medigue C; Vallenet D PLoS Comput Biol; 2012 May; 8(5):e1002540. PubMed ID: 22693442 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology. Clemente JC; Satou K; Valiente G Genome Inform; 2005; 16(2):45-55. PubMed ID: 16901088 [TBL] [Abstract][Full Text] [Related]
7. Modeling the complex dynamics of enzyme-pathway coevolution. Schütte M; Skupin A; Segrè D; Ebenhöh O Chaos; 2010 Dec; 20(4):045115. PubMed ID: 21198127 [TBL] [Abstract][Full Text] [Related]
8. Integration of enzyme activities into metabolic flux distributions by elementary mode analysis. Kurata H; Zhao Q; Okuda R; Shimizu K BMC Syst Biol; 2007 Jul; 1():31. PubMed ID: 17640350 [TBL] [Abstract][Full Text] [Related]
9. Profiling the orphan enzymes. Sorokina M; Stam M; Médigue C; Lespinet O; Vallenet D Biol Direct; 2014 Jun; 9():10. PubMed ID: 24906382 [TBL] [Abstract][Full Text] [Related]
10. Multi-substrate-activity space and quasi-species in enzyme evolution: Ohno's dilemma, promiscuity and functional orthogonality. Mannervik B; Runarsdottir A; Kurtovic S Biochem Soc Trans; 2009 Aug; 37(Pt 4):740-4. PubMed ID: 19614586 [TBL] [Abstract][Full Text] [Related]
12. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling. Huthmacher C; Gille C; Holzhütter HG J Theor Biol; 2008 Jun; 252(3):456-64. PubMed ID: 17988690 [TBL] [Abstract][Full Text] [Related]
13. Orphan enzymes could be an unexplored reservoir of new drug targets. Lespinet O; Labedan B Drug Discov Today; 2006 Apr; 11(7-8):300-5. PubMed ID: 16580971 [TBL] [Abstract][Full Text] [Related]
14. The complex relationship of gene duplication and essentiality. Makino T; Hokamp K; McLysaght A Trends Genet; 2009 Apr; 25(4):152-5. PubMed ID: 19285746 [TBL] [Abstract][Full Text] [Related]
15. Modelling the evolution of multi-gene families. Nye TM Stat Methods Med Res; 2009 Oct; 18(5):487-504. PubMed ID: 19153166 [TBL] [Abstract][Full Text] [Related]
16. Biomarkers in aquatic plants: selection and utility. Brain RA; Cedergreen N Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039 [TBL] [Abstract][Full Text] [Related]
18. The origin and evolution of modern metabolism. Caetano-Anollés G; Yafremava LS; Gee H; Caetano-Anollés D; Kim HS; Mittenthal JE Int J Biochem Cell Biol; 2009 Feb; 41(2):285-97. PubMed ID: 18790074 [TBL] [Abstract][Full Text] [Related]
19. Generalized reaction patterns for prediction of unknown enzymatic reactions. Shimizu Y; Hattori M; Goto S; Kanehisa M Genome Inform; 2008; 20():149-58. PubMed ID: 19425130 [TBL] [Abstract][Full Text] [Related]
20. Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours. Yamada T; Waller AS; Raes J; Zelezniak A; Perchat N; Perret A; Salanoubat M; Patil KR; Weissenbach J; Bork P Mol Syst Biol; 2012 May; 8():581. PubMed ID: 22569339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]