BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17580096)

  • 21. Phenotype-based identification of host genes required for replication of African swine fever virus.
    Chang AC; Zsak L; Feng Y; Mosseri R; Lu Q; Kowalski P; Zsak A; Burrage TG; Neilan JG; Kutish GF; Lu Z; Laegreid W; Rock DL; Cohen SN
    J Virol; 2006 Sep; 80(17):8705-17. PubMed ID: 16912318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New Insights into the Nucleolar Localization of a Plant RNA Virus-Encoded Protein That Acts in Both RNA Packaging and RNA Silencing Suppression: Involvement of Importins Alpha and Relevance for Viral Infection.
    Pérez-Cañamás M; Hernández C
    Mol Plant Microbe Interact; 2018 Nov; 31(11):1134-1144. PubMed ID: 29781763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nuclear export of influenza virus ribonucleoproteins: identification of an export intermediate at the nuclear periphery.
    Ma K; Roy AM; Whittaker GR
    Virology; 2001 Apr; 282(2):215-20. PubMed ID: 11289803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intranuclear localization of herpes simplex virus immediate-early and delayed-early proteins: evidence that ICP 4 is associated with progeny virus DNA.
    Randall RE; Dinwoodie N
    J Gen Virol; 1986 Oct; 67 ( Pt 10)():2163-77. PubMed ID: 3020158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trypanosoma brucei RNA binding proteins p34 and p37 mediate NOPP44/46 cellular localization via the exportin 1 nuclear export pathway.
    Hellman K; Prohaska K; Williams N
    Eukaryot Cell; 2007 Dec; 6(12):2206-13. PubMed ID: 17921352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus.
    O'Donnell V; Holinka LG; Gladue DP; Sanford B; Krug PW; Lu X; Arzt J; Reese B; Carrillo C; Risatti GR; Borca MV
    J Virol; 2015 Jun; 89(11):6048-56. PubMed ID: 25810553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. African swine fever virus replication and genomics.
    Dixon LK; Chapman DA; Netherton CL; Upton C
    Virus Res; 2013 Apr; 173(1):3-14. PubMed ID: 23142553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disruption of nuclear organization during the initial phase of African swine fever virus infection.
    Ballester M; Rodríguez-Cariño C; Pérez M; Gallardo C; Rodríguez JM; Salas ML; Rodriguez F
    J Virol; 2011 Aug; 85(16):8263-9. PubMed ID: 21680527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into a CRM1-mediated RNA-nuclear export pathway in Trypanosoma cruzi.
    Cuevas IC; Frasch AC; D'Orso I
    Mol Biochem Parasitol; 2005 Jan; 139(1):15-24. PubMed ID: 15610815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. African swine fever virus organelle rearrangements.
    Netherton CL; Wileman TE
    Virus Res; 2013 Apr; 173(1):76-86. PubMed ID: 23291273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleocytoplasmic shuttling of the thyroid hormone receptor alpha.
    Bunn CF; Neidig JA; Freidinger KE; Stankiewicz TA; Weaver BS; McGrew J; Allison LA
    Mol Endocrinol; 2001 Apr; 15(4):512-33. PubMed ID: 11266504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Apigenin inhibits African swine fever virus infection in vitro.
    Hakobyan A; Arabyan E; Avetisyan A; Abroyan L; Hakobyan L; Zakaryan H
    Arch Virol; 2016 Dec; 161(12):3445-3453. PubMed ID: 27638776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apoptosis in porcine macrophages infected in vitro with African swine fever virus (ASFV) strains with different virulence.
    Portugal R; Leitão A; Martins C
    Arch Virol; 2009; 154(9):1441-50. PubMed ID: 19657705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome.
    Krug PW; Holinka LG; O'Donnell V; Reese B; Sanford B; Fernandez-Sainz I; Gladue DP; Arzt J; Rodriguez L; Risatti GR; Borca MV
    J Virol; 2015 Feb; 89(4):2324-32. PubMed ID: 25505073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site.
    Cuesta-Geijo MÁ; Barrado-Gil L; Galindo I; Muñoz-Moreno R; Alonso C
    Viruses; 2017 Jun; 9(6):. PubMed ID: 28587154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembly of African swine fever virus: role of polyprotein pp220.
    Andrés G; Simón-Mateo C; Viñuela E
    J Virol; 1997 Mar; 71(3):2331-41. PubMed ID: 9032369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Host cell targets for African swine fever virus.
    Muñoz-Moreno R; Galindo I; Cuesta-Geijo MÁ; Barrado-Gil L; Alonso C
    Virus Res; 2015 Nov; 209():118-27. PubMed ID: 26057710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRM1-dependent nuclear export and dimerization with hMSH5 contribute to the regulation of hMSH4 subcellular localization.
    Neyton S; Lespinasse F; Lahaye F; Staccini P; Paquis-Flucklinger V; Santucci-Darmanin S
    Exp Cell Res; 2007 Oct; 313(17):3680-93. PubMed ID: 17869244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly of African Swine fever virus: quantitative ultrastructural analysis in vitro and in vivo.
    Brookes SM; Dixon LK; Parkhouse RM
    Virology; 1996 Oct; 224(1):84-92. PubMed ID: 8862402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular virus DNA distribution and the acquisition of the nucleoprotein core during African swine fever virus particle assembly: ultrastructural in situ hybridisation and DNase-gold labelling.
    Brookes SM; Hyatt AD; Wise T; Parkhouse RM
    Virology; 1998 Sep; 249(1):175-88. PubMed ID: 9740789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.