These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 17580106)

  • 1. Pore size distribution in tablets measured with a morphological sieve.
    Wu YS; van Vliet LJ; Frijlink HW; van der Voort Maarschalk K
    Int J Pharm; 2007 Sep; 342(1-2):176-83. PubMed ID: 17580106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets].
    Szepes A; Kovács J; Szabóné Revész P
    Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore shape in the sodium chloride matrix of tablets after the addition of starch as a second component.
    Wu YS; Frijlink HW; van Vliet LJ; van der Voort Maarschalk K
    Eur J Pharm Biopharm; 2008 Oct; 70(2):539-43. PubMed ID: 18582573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Microhardness of ribbons and mercury porosimetry measurements of tablets.
    Freitag F; Reincke K; Runge J; Grellmann W; Kleinebudde P
    Eur J Pharm Sci; 2004 Jul; 22(4):325-33. PubMed ID: 15196589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L; Mantalaris A; Bismarck A
    Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle size distribution and evolution in tablet structure during and after compaction.
    Fichtner F; Rasmuson A; Alderborn G
    Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of powder blend and tablet structure on drug release mechanisms of hydrophobic starch acetate matrix tablets.
    van Veen B; Pajander J; Zuurman K; Lappalainen R; Poso A; Frijlink HW; Ketolainen J
    Eur J Pharm Biopharm; 2005 Oct; 61(3):149-57. PubMed ID: 16005196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser scanning confocal microscopy characterization of water repellent distribution in a sandstone pore network.
    Zoghlami K; Gómez-Gras D; Corbella M; Darragi F
    Microsc Res Tech; 2008 Nov; 71(11):816-21. PubMed ID: 18767050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesopore structure of microcrystalline cellulose tablets characterized by nitrogen adsorption and SEM: the influence on water-induced ionic conduction.
    Nilsson M; Mihranyan A; Valizadeh S; Strømme M
    J Phys Chem B; 2006 Aug; 110(32):15776-81. PubMed ID: 16898725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of drug substance particle size on the characteristics of granulation manufactured in a high-shear mixer.
    Badawy SI; Lee TJ; Menning MM
    AAPS PharmSciTech; 2000 Nov; 1(4):E33. PubMed ID: 14727898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demineralized dentin 3D porosity and pore size distribution using mercury porosimetry.
    Vennat E; Bogicevic C; Fleureau JM; Degrange M
    Dent Mater; 2009 Jun; 25(6):729-35. PubMed ID: 19174308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore formation in tablets compressed from binary mixtures as a result of deformation and relaxation of particles.
    van Veen B; van der Voort Maarschalk K; Bolhuis GK; Visser MR; Zuurman K; Frijlink HW
    Eur J Pharm Sci; 2002 Mar; 15(2):171-7. PubMed ID: 11849914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of entrapped pore in the pastilles by a mercury porosimetery technique.
    Kim JW; Cheon YH; Donchev D; Kim SH; Ulrich J
    Int J Pharm; 2005 Jan; 288(2):305-14. PubMed ID: 15620871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous structure of natural and modified clinoptilolites.
    Kowalczyk P; Sprynskyy M; Terzyk AP; Lebedynets M; Namieśnik J; Buszewski B
    J Colloid Interface Sci; 2006 May; 297(1):77-85. PubMed ID: 16310211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed characterisation of the flow resistance of commercial sub-2 micrometer reversed-phase columns.
    Cabooter D; Billen J; Terryn H; Lynen F; Sandra P; Desmet G
    J Chromatogr A; 2008 Jan; 1178(1-2):108-17. PubMed ID: 18082751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography.
    Zheng YM; Yu HQ
    Water Res; 2007 Jan; 41(1):39-46. PubMed ID: 17095034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of mercury porosimetry in assessing the effect of different binders on the pore structure and bonding properties of tablets.
    Mattsson S; Nyström C
    Eur J Pharm Biopharm; 2001 Sep; 52(2):237-47. PubMed ID: 11522492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The bioavailability of paracetamol II. The effect of porosity and mechanical properties of the dosage form on solubility].
    Abebe A; Chulia D; Verain A
    Pharm Acta Helv; 1991; 66(3):83-7. PubMed ID: 1763092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional pore structure of chromatographic adsorbents from electron tomography.
    Yao Y; Czymmek KJ; Pazhianur R; Lenhoff AM
    Langmuir; 2006 Dec; 22(26):11148-57. PubMed ID: 17154596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of highly porous polymeric materials with pore diameters larger than 100 nm by mercury porosimetry and X-ray scattering methods.
    Egger CC; du Fresne C; Raman VI; Schädler V; Frechen T; Roth SV; Müller-Buschbaum P
    Langmuir; 2008 Jun; 24(11):5877-87. PubMed ID: 18442280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.