These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 17580861)

  • 1. Catalyst volume to surface area constraints for nucleating carbon nanotubes.
    Rümmeli MH; Kramberger C; Löffler M; Jost O; Bystrzejewski M; Grüneis A; Gemming T; Pompe W; Büchner B; Pichler T
    J Phys Chem B; 2007 Jul; 111(28):8234-41. PubMed ID: 17580861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays.
    Eres G; Kinkhabwala AA; Cui H; Geohegan DB; Puretzky AA; Lowndes DH
    J Phys Chem B; 2005 Sep; 109(35):16684-94. PubMed ID: 16853123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.
    Ding F; Rosén A; Bolton K
    J Chem Phys; 2004 Aug; 121(6):2775-9. PubMed ID: 15281881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube formation and growth via particle-particle interaction.
    Height MJ; Howard JB; Tester JW; Vander Sande JB
    J Phys Chem B; 2005 Jun; 109(25):12337-46. PubMed ID: 16852523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constrained iron catalysts for single-walled carbon nanotube growth.
    Kramer RM; Sowards LA; Pender MJ; Stone MO; Naik RR
    Langmuir; 2005 Aug; 21(18):8466-70. PubMed ID: 16114958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-walled carbon nanotube diameter.
    Jost O; Gorbunov A; Liu X; Pompe W; Fink J
    J Nanosci Nanotechnol; 2004 Apr; 4(4):433-40. PubMed ID: 15296234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxide-driven carbon nanotube growth in supported catalyst CVD.
    Rümmeli MH; Schäffel F; Kramberger C; Gemming T; Bachmatiuk A; Kalenczuk RJ; Rellinghaus B; Büchner B; Pichler T
    J Am Chem Soc; 2007 Dec; 129(51):15772-3. PubMed ID: 18052382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.
    Pint CL; Xu YQ; Pasquali M; Hauge RH
    ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalyst size effects on the growth of single-walled nanotubes in neutral and plasma systems.
    Tam E; Ostrikov KK
    Nanotechnology; 2009 Sep; 20(37):375603. PubMed ID: 19706955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions.
    Sharma R; Rez P; Treacy MM; Stuart SJ
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):231-7. PubMed ID: 16123070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation of low-dimensional inorganic nanotube crystallites in carbon nanotubes.
    Wilson M
    J Chem Phys; 2006 Mar; 124(12):124706. PubMed ID: 16599717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotube nucleation versus carbon-catalyst adhesion--probed by molecular dynamics simulations.
    Ribas MA; Ding F; Balbuena PB; Yakobson BI
    J Chem Phys; 2009 Dec; 131(22):224501. PubMed ID: 20001051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes.
    Hemraj-Benny T; Bandosz TJ; Wong SS
    J Colloid Interface Sci; 2008 Jan; 317(2):375-82. PubMed ID: 17950747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory and experiment agree: single-walled carbon nanotube caps grow catalyst-free with chirality preference on a SiC surface.
    Irle S; Wang Z; Zheng G; Morokuma K; Kusunoki M
    J Chem Phys; 2006 Jul; 125(4):44702. PubMed ID: 16942169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flux-dependent growth kinetics and diameter selectivity in single-wall carbon nanotube arrays.
    Geohegan DB; Puretzky AA; Jackson JJ; Rouleau CM; Eres G; More KL
    ACS Nano; 2011 Oct; 5(10):8311-21. PubMed ID: 21916517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.
    Ohta Y; Okamoto Y; Page AJ; Irle S; Morokuma K
    ACS Nano; 2009 Nov; 3(11):3413-20. PubMed ID: 19827761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.
    Konduri S; Mukherjee S; Nair S
    ACS Nano; 2007 Dec; 1(5):393-402. PubMed ID: 19206659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.