These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 17581038)
1. Adaptive explicit-implicit tau-leaping method with automatic tau selection. Cao Y; Gillespie DT; Petzold LR J Chem Phys; 2007 Jun; 126(22):224101. PubMed ID: 17581038 [TBL] [Abstract][Full Text] [Related]
2. Integral tau methods for stiff stochastic chemical systems. Yang Y; Rathinam M; Shen J J Chem Phys; 2011 Jan; 134(4):044129. PubMed ID: 21280709 [TBL] [Abstract][Full Text] [Related]
3. Efficient step size selection for the tau-leaping simulation method. Cao Y; Gillespie DT; Petzold LR J Chem Phys; 2006 Jan; 124(4):044109. PubMed ID: 16460151 [TBL] [Abstract][Full Text] [Related]
5. Highly accurate tau-leaping methods with random corrections. Hu Y; Li T J Chem Phys; 2009 Mar; 130(12):124109. PubMed ID: 19334810 [TBL] [Abstract][Full Text] [Related]
6. A weak second order tau-leaping method for chemical kinetic systems. Hu Y; Li T; Min B J Chem Phys; 2011 Jul; 135(2):024113. PubMed ID: 21766931 [TBL] [Abstract][Full Text] [Related]
7. The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. Cao Y; Petzold LR; Rathinam M; Gillespie DT J Chem Phys; 2004 Dec; 121(24):12169-78. PubMed ID: 15606235 [TBL] [Abstract][Full Text] [Related]
8. Stochastic simulation of chemical kinetics. Gillespie DT Annu Rev Phys Chem; 2007; 58():35-55. PubMed ID: 17037977 [TBL] [Abstract][Full Text] [Related]
9. S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging [Formula: see text]-Leaping and R-Leaping. Lipková J; Arampatzis G; Chatelain P; Menze B; Koumoutsakos P Bull Math Biol; 2019 Aug; 81(8):3074-3096. PubMed ID: 29992453 [TBL] [Abstract][Full Text] [Related]
10. Unbiased tau-leap methods for stochastic simulation of chemically reacting systems. Xu Z; Cai X J Chem Phys; 2008 Apr; 128(15):154112. PubMed ID: 18433195 [TBL] [Abstract][Full Text] [Related]
11. Stiffness detection and reduction in discrete stochastic simulation of biochemical systems. Pu Y; Watson LT; Cao Y J Chem Phys; 2011 Feb; 134(5):054105. PubMed ID: 21303090 [TBL] [Abstract][Full Text] [Related]
12. The finite state projection algorithm for the solution of the chemical master equation. Munsky B; Khammash M J Chem Phys; 2006 Jan; 124(4):044104. PubMed ID: 16460146 [TBL] [Abstract][Full Text] [Related]
14. Implicit Kalman filtering. Skliar M; Ramirez WF Int J Control; 1997; 66(3):393-412. PubMed ID: 11541942 [TBL] [Abstract][Full Text] [Related]
15. Accurate stochastic simulation via the step anticipation tau-leaping (SAL) algorithm. Sehl M; Alekseyenko AV; Lange KL J Comput Biol; 2009 Sep; 16(9):1195-208. PubMed ID: 19772431 [TBL] [Abstract][Full Text] [Related]
16. An efficient finite-difference strategy for sensitivity analysis of stochastic models of biochemical systems. Morshed M; Ingalls B; Ilie S Biosystems; 2017 Jan; 151():43-52. PubMed ID: 27914944 [TBL] [Abstract][Full Text] [Related]
17. Avoiding negative populations in explicit Poisson tau-leaping. Cao Y; Gillespie DT; Petzold LR J Chem Phys; 2005 Aug; 123(5):054104. PubMed ID: 16108628 [TBL] [Abstract][Full Text] [Related]
18. Automatic identification of model reductions for discrete stochastic simulation. Wu S; Fu J; Li H; Petzold L J Chem Phys; 2012 Jul; 137(3):034106. PubMed ID: 22830682 [TBL] [Abstract][Full Text] [Related]
19. Variable time-stepping in the pathwise numerical solution of the chemical Langevin equation. Ilie S J Chem Phys; 2012 Dec; 137(23):234110. PubMed ID: 23267474 [TBL] [Abstract][Full Text] [Related]
20. Generalized binomial tau-leap method for biochemical kinetics incorporating both delay and intrinsic noise. Leier A; Marquez-Lago TT; Burrage K J Chem Phys; 2008 May; 128(20):205107. PubMed ID: 18513050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]