These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17581066)

  • 21. Thermodynamic and structural properties of repulsive hard-core Yukawa fluid: integral equation theory, perturbation theory and Monte Carlo simulations.
    Cochran TW; Chiew YC
    J Chem Phys; 2004 Jul; 121(3):1480-6. PubMed ID: 15260693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Criticality of a liquid-vapor interface from an inhomogeneous integral equation theory.
    Omelyan I; Hirata F; Kovalenko A
    Phys Chem Chem Phys; 2005 Dec; 7(24):4132-7. PubMed ID: 16474878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo simulation of the nonadditive restricted primitive model of ionic fluids: phase diagram and clustering.
    Fantoni R; Pastore G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052303. PubMed ID: 23767536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Consistent Ornstein-Zernike Approximation (SCOZA) and exact second virial coefficients and their relationship with critical temperature for colloidal or protein suspensions with short-ranged attractive interactions.
    Gazzillo D; Pini D
    J Chem Phys; 2013 Oct; 139(16):164501. PubMed ID: 24182043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liquid-vapor phase diagram and surface properties in oppositely charged colloids represented by a mixture of attractive and repulsive Yukawa potentials.
    Chapela GA; del Río F; Alejandre J
    J Chem Phys; 2013 Feb; 138(5):054507. PubMed ID: 23406133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular simulation study of effect of molecular association on vapor-liquid interfacial properties.
    Singh JK; Kofke DA
    J Chem Phys; 2004 Nov; 121(19):9574-80. PubMed ID: 15538879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Liquid gallium-lead mixture phase diagram, surface tension near the critical mixing point, and prewetting transition.
    Osman SM; Grosdidier B; Ali I; Abdellah AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062103. PubMed ID: 23848623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discrete perturbation theory for the hard-core attractive and repulsive Yukawa potentials.
    Torres-Arenas J; Cervantes LA; Benavides AL; Chapela GA; del Río F
    J Chem Phys; 2010 Jan; 132(3):034501. PubMed ID: 20095742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase coexistence in polydisperse multi-Yukawa hard-sphere fluid: high temperature approximation.
    Kalyuzhnyi YV; Hlushak SP
    J Chem Phys; 2006 Jul; 125(3):34501. PubMed ID: 16863356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension.
    Fortini A; Hynninen AP; Dijkstra M
    J Chem Phys; 2006 Sep; 125(9):094502. PubMed ID: 16965092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local solvent density augmentation around a solute in supercritical solvent bath: 1. A mechanism explanation and a new phenomenon.
    Zhou S
    J Phys Chem B; 2005 Apr; 109(15):7522-8. PubMed ID: 16851863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid-vapor transition driven by bond disorder.
    Bozorgui B; Frenkel D
    Phys Rev Lett; 2008 Jul; 101(4):045701. PubMed ID: 18764339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.
    Patti A; Cuetos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011403. PubMed ID: 23005413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-consistent Ornstein-Zernike approximation for the Yukawa fluid with improved direct correlation function.
    Reiner A; Høye JS
    J Chem Phys; 2008 Mar; 128(11):114507. PubMed ID: 18361591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Equation of state and liquid-vapor equilibria of one- and two-Yukawa hard-sphere chain fluids: theory and simulation.
    Kalyuzhnyi YV; McCabe C; Whitebay E; Cummings PT
    J Chem Phys; 2004 Oct; 121(16):8128-37. PubMed ID: 15485277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generalized equation of state for fluids: From molecular liquids to colloidal dispersions.
    Perdomo-Hurtado L; Valadez-Pérez NE; Millan-Malo B; Castañeda-Priego R
    J Chem Phys; 2021 Feb; 154(8):084902. PubMed ID: 33639744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of secondary structures in polypetides. A Monte Carlo simulation.
    Sikorski A; Romiszowski P
    Acta Pol Pharm; 2002; 59(6):466-9. PubMed ID: 12669774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic properties and static structure factor for a Yukawa fluid in the mean spherical approximation.
    Montes-Perez J; Cruz-Vera A; Herrera JN
    Interdiscip Sci; 2011 Dec; 3(4):243-50. PubMed ID: 22179758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase separation in mixtures of Yukawa and charged Yukawa particles from Gibbs ensemble Monte Carlo simulations and the mean spherical approximation.
    Kristóf T; Boda D; Henderson D
    J Chem Phys; 2004 Feb; 120(6):2846-50. PubMed ID: 15268431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.