These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 17581083)

  • 1. Implications of a high dielectric constant in proteins.
    Lund M; Jönsson B; Woodward CE
    J Chem Phys; 2007 Jun; 126(22):225103. PubMed ID: 17581083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the acid/base behavior of proteins: a constant-pH Monte Carlo approach with generalized born solvent.
    Aleksandrov A; Polydorides S; Archontis G; Simonson T
    J Phys Chem B; 2010 Aug; 114(32):10634-48. PubMed ID: 20701391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation.
    Lu BZ; Chen WZ; Wang CX; Xu XJ
    Proteins; 2002 Aug; 48(3):497-504. PubMed ID: 12112674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sphere-based model for the electrostatics of globular proteins.
    Werner P; Caflisch A
    J Am Chem Soc; 2003 Apr; 125(15):4600-8. PubMed ID: 12683832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective water model for Monte Carlo simulations of proteins.
    Banks J; Brower RC; Ma J
    Biopolymers; 1995 Mar; 35(3):331-41. PubMed ID: 7703376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limitations of atom-centered dielectric functions in implicit solvent models.
    Swanson JM; Mongan J; McCammon JA
    J Phys Chem B; 2005 Aug; 109(31):14769-72. PubMed ID: 16852866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A demonstration of the inhomogeneity of the local dielectric response of proteins by molecular dynamics simulations.
    Patargias GN; Harris SA; Harding JH
    J Chem Phys; 2010 Jun; 132(23):235103. PubMed ID: 20572740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics at constant pH and reduction potential: application to cytochrome c(3).
    Machuqueiro M; Baptista AM
    J Am Chem Soc; 2009 Sep; 131(35):12586-94. PubMed ID: 19685871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel.
    Boda D; Valiskó M; Eisenberg B; Nonner W; Henderson D; Gillespie D
    J Chem Phys; 2006 Jul; 125(3):34901. PubMed ID: 16863379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution.
    Egwolf B; Tavan P
    J Chem Phys; 2004 Jan; 120(4):2056-68. PubMed ID: 15268342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The determinants of pKas in proteins.
    Antosiewicz J; McCammon JA; Gilson MK
    Biochemistry; 1996 Jun; 35(24):7819-33. PubMed ID: 8672483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of surface site distribution and dielectric discontinuity on the charging behavior of nanoparticles: a grand canonical Monte Carlo study.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    Phys Chem Chem Phys; 2006 Dec; 8(48):5679-88. PubMed ID: 17149489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the influence of the internal aqueous solvent structure on electrostatic interactions at the protein-solvent interface by nonlocal continuum electrostatic approach.
    Rubinstein A; Sherman S
    Biopolymers; 2007 Oct 5-15; 87(2-3):149-64. PubMed ID: 17626298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method.
    Lee MS; Olson MA
    J Phys Chem B; 2005 Mar; 109(11):5223-36. PubMed ID: 16863188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating proteins at constant pH: An approach combining molecular dynamics and Monte Carlo simulation.
    Bürgi R; Kollman PA; Van Gunsteren WF
    Proteins; 2002 Jun; 47(4):469-80. PubMed ID: 12001225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic contribution to the binding stability of protein-protein complexes.
    Dong F; Zhou HX
    Proteins; 2006 Oct; 65(1):87-102. PubMed ID: 16856180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.