BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17581235)

  • 1. Compensating enthalpic and entropic changes hinder binding affinity optimization.
    Lafont V; Armstrong AA; Ohtaka H; Kiso Y; Mario Amzel L; Freire E
    Chem Biol Drug Des; 2007 Jun; 69(6):413-22. PubMed ID: 17581235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The binding energetics of first- and second-generation HIV-1 protease inhibitors: implications for drug design.
    Velazquez-Campoy A; Kiso Y; Freire E
    Arch Biochem Biophys; 2001 Jun; 390(2):169-75. PubMed ID: 11396919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P; Lipowsky R; Knecht V
    J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations.
    Muzammil S; Armstrong AA; Kang LW; Jakalian A; Bonneau PR; Schmelmer V; Amzel LM; Freire E
    J Virol; 2007 May; 81(10):5144-54. PubMed ID: 17360759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin.
    Gómez J; Freire E
    J Mol Biol; 1995 Sep; 252(3):337-50. PubMed ID: 7563055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of sulfoximine based inhibitors for HIV-1 protease.
    Raza A; Sham YY; Vince R
    Bioorg Med Chem Lett; 2008 Oct; 18(20):5406-10. PubMed ID: 18829317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Think twice: understanding the high potency of bis(phenyl)methane inhibitors of thrombin.
    Baum B; Muley L; Heine A; Smolinski M; Hangauer D; Klebe G
    J Mol Biol; 2009 Aug; 391(3):552-64. PubMed ID: 19520086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study.
    Holdgate GA; Tunnicliffe A; Ward WH; Weston SA; Rosenbrock G; Barth PT; Taylor IW; Pauptit RA; Timms D
    Biochemistry; 1997 Aug; 36(32):9663-73. PubMed ID: 9245398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis.
    Luque I; Todd MJ; Gómez J; Semo N; Freire E
    Biochemistry; 1998 Apr; 37(17):5791-7. PubMed ID: 9558312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases.
    Stoica I; Sadiq SK; Coveney PV
    J Am Chem Soc; 2008 Feb; 130(8):2639-48. PubMed ID: 18225901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic cycle analysis and inhibitor design against beta-lactamase.
    Roth TA; Minasov G; Morandi S; Prati F; Shoichet BK
    Biochemistry; 2003 Dec; 42(49):14483-91. PubMed ID: 14661960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants.
    Kozísek M; Bray J; Rezácová P; Sasková K; Brynda J; Pokorná J; Mammano F; Rulísek L; Konvalinka J
    J Mol Biol; 2007 Dec; 374(4):1005-16. PubMed ID: 17977555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of HIV-1 protease inhibitor resistance by phosphonate-mediated solvent anchoring.
    Cihlar T; He GX; Liu X; Chen JM; Hatada M; Swaminathan S; McDermott MJ; Yang ZY; Mulato AS; Chen X; Leavitt SA; Stray KM; Lee WA
    J Mol Biol; 2006 Oct; 363(3):635-47. PubMed ID: 16979654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural parameterization of the binding enthalpy of small ligands.
    Luque I; Freire E
    Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic rules for the design of high affinity HIV-1 protease inhibitors with adaptability to mutations and high selectivity towards unwanted targets.
    Ohtaka H; Muzammil S; Schön A; Velazquez-Campoy A; Vega S; Freire E
    Int J Biochem Cell Biol; 2004 Sep; 36(9):1787-99. PubMed ID: 15183345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analysis of binding between mouse major urinary protein-I and the pheromone 2-sec-butyl-4,5-dihydrothiazole.
    Sharrow SD; Novotny MV; Stone MJ
    Biochemistry; 2003 May; 42(20):6302-9. PubMed ID: 12755635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor.
    Velazquez-Campoy A; Luque I; Todd MJ; Milutinovich M; Kiso Y; Freire E
    Protein Sci; 2000 Sep; 9(9):1801-9. PubMed ID: 11045625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations applied to the study of subtypes of HIV-1 protease common to Brazil, Africa, and Asia.
    Batista PR; Wilter A; Durham EH; Pascutti PG
    Cell Biochem Biophys; 2006; 44(3):395-404. PubMed ID: 16679526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetic and entropic factors determining binding affinity in protein-ligand complexes.
    Klebe G; Böhm HJ
    J Recept Signal Transduct Res; 1997; 17(1-3):459-73. PubMed ID: 9029508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.