BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 17581806)

  • 1. Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering.
    Koide T
    Philos Trans R Soc Lond B Biol Sci; 2007 Aug; 362(1484):1281-91. PubMed ID: 17581806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Collagen-like triple helical peptides: applications in drug development and regenerative medicine].
    Koide T
    Yakugaku Zasshi; 2013; 133(3):387-92. PubMed ID: 23449419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple helical collagen-like peptides: engineering and applications in matrix biology.
    Koide T
    Connect Tissue Res; 2005; 46(3):131-41. PubMed ID: 16147856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomaterial functionalization with triple-helical peptides for tissue engineering.
    Malcor JD; Mallein-Gerin F
    Acta Biomater; 2022 Aug; 148():1-21. PubMed ID: 35675889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order assembly of collagen peptides into nano- and microscale materials.
    Przybyla DE; Chmielewski J
    Biochemistry; 2010 Jun; 49(21):4411-9. PubMed ID: 20415447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting and mimicking collagens via triple helical peptide assembly.
    Li Y; Yu SM
    Curr Opin Chem Biol; 2013 Dec; 17(6):968-75. PubMed ID: 24210894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Collagen Mimetics to Collagen Hybridization and Back.
    Ratnatilaka Na Bhuket P; Li Y; Yu SM
    Acc Chem Res; 2024 Jun; 57(12):1649-1657. PubMed ID: 38795029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of recombinant human collagen in tissue engineering.
    Yang C; Hillas PJ; Báez JA; Nokelainen M; Balan J; Tang J; Spiro R; Polarek JW
    BioDrugs; 2004; 18(2):103-19. PubMed ID: 15046526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal modification of collagen scaffolds mediated by triple helical propensity.
    Wang AY; Foss CA; Leong S; Mo X; Pomper MG; Yu SM
    Biomacromolecules; 2008 Jul; 9(7):1755-63. PubMed ID: 18547103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide.
    Hwang J; San BH; Turner NJ; White LJ; Faulk DM; Badylak SF; Li Y; Yu SM
    Acta Biomater; 2017 Apr; 53():268-278. PubMed ID: 28161576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide.
    Reyes CD; García AJ
    J Biomed Mater Res A; 2003 Jun; 65(4):511-23. PubMed ID: 12761842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen-Like Peptide Bioconjugates.
    Luo T; Kiick KL
    Bioconjug Chem; 2017 Mar; 28(3):816-827. PubMed ID: 28125203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The predominant roles of the sequence periodicity in the self-assembly of collagen-mimetic mini-fibrils.
    Chen F; Strawn R; Xu Y
    Protein Sci; 2019 Sep; 28(9):1640-1651. PubMed ID: 31299125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic design of fibril-forming non-immunogenic collagen like proteins for tissue engineering.
    Aarthy M; Hemalatha T; Suryalakshmi P; Vinoth V; Mercyjayapriya J; Shanmugam G; Ayyadurai N
    Int J Biol Macromol; 2024 May; 266(Pt 1):130999. PubMed ID: 38521303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Template-assembled triple-helical peptide molecules: mimicry of collagen by molecular architecture and integrin-specific cell adhesion.
    Khew ST; Tong YW
    Biochemistry; 2008 Jan; 47(2):585-96. PubMed ID: 18154308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting the correct cellular model for assessing of the biological response of collagen-based biomaterials.
    Davidenko N; Hamaia S; Bax DV; Malcor JD; Schuster CF; Gullberg D; Farndale RW; Best SM; Cameron RE
    Acta Biomater; 2018 Jan; 65():88-101. PubMed ID: 29107054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development.
    Sorushanova A; Delgado LM; Wu Z; Shologu N; Kshirsagar A; Raghunath R; Mullen AM; Bayon Y; Pandit A; Raghunath M; Zeugolis DI
    Adv Mater; 2019 Jan; 31(1):e1801651. PubMed ID: 30126066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels.
    Kim JE; Kim SH; Jung Y
    J Biosci Bioeng; 2015 Jul; 120(1):91-8. PubMed ID: 25540912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Therapeutic Collagen-Based Biomaterials in the Infarcted Mouse Heart by Extracellular Matrix Targeted MALDI Imaging Mass Spectrometry.
    Clift CL; McLaughlin S; Muñoz M; Suuronen EJ; Rotstein BH; Mehta AS; Drake RR; Alarcon EI; Angel PM
    J Am Soc Mass Spectrom; 2021 Dec; 32(12):2746-2754. PubMed ID: 34713699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular assembly of electrostatically stabilized, hydroxyproline-lacking collagen-mimetic peptides.
    Krishna OD; Kiick KL
    Biomacromolecules; 2009 Sep; 10(9):2626-31. PubMed ID: 19681603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.