BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 17581872)

  • 1. Coupling of hydrogenic tunneling to active-site motion in the hydrogen radical transfer catalyzed by a coenzyme B12-dependent mutase.
    Dybala-Defratyka A; Paneth P; Banerjee R; Truhlar DG
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10774-9. PubMed ID: 17581872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen tunneling in adenosylcobalamin-dependent glutamate mutase: evidence from intrinsic kinetic isotope effects measured by intramolecular competition.
    Yoon M; Song H; Håkansson K; Marsh EN
    Biochemistry; 2010 Apr; 49(14):3168-73. PubMed ID: 20225826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the beta-neopentylcobalamin system combined with prior adocobalamin data.
    Doll KM; Finke RG
    Inorg Chem; 2003 Aug; 42(16):4849-56. PubMed ID: 12895106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coenzyme B(12) dependent glutamate mutase.
    Gruber K; Kratky C
    Curr Opin Chem Biol; 2002 Oct; 6(5):598-603. PubMed ID: 12413543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling.
    Doll KM; Bender BR; Finke RG
    J Am Chem Soc; 2003 Sep; 125(36):10877-84. PubMed ID: 12952467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of tunneling in the enzyme glutamate mutase.
    Rommel JB; Liu Y; Werner HJ; Kästner J
    J Phys Chem B; 2012 Nov; 116(46):13682-9. PubMed ID: 23127187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic deuterium kinetic isotope effects in glutamate mutase measured by an intramolecular competition experiment.
    Yoon M; Kalli A; Lee HY; Håkansson K; Marsh EN
    Angew Chem Int Ed Engl; 2007; 46(44):8455-9. PubMed ID: 17910014
    [No Abstract]   [Full Text] [Related]  

  • 8. Radical carbon skeleton rearrangements: catalysis by coenzyme B12-dependent mutases.
    Banerjee R
    Chem Rev; 2003 Jun; 103(6):2083-94. PubMed ID: 12797824
    [No Abstract]   [Full Text] [Related]  

  • 9. Isotope effects for deuterium transfer between substrate and coenzyme in adenosylcobalamin-dependent glutamate mutase.
    Cheng MC; Marsh EN
    Biochemistry; 2005 Feb; 44(7):2686-91. PubMed ID: 15709782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical peregrinations catalyzed by coenzyme B12-dependent enzymes.
    Banerjee R
    Biochemistry; 2001 May; 40(21):6191-8. PubMed ID: 11371179
    [No Abstract]   [Full Text] [Related]  

  • 11. When a spectator turns killer: suicidal electron transfer from cobalamin in methylmalonyl-CoA mutase.
    Vlasie MD; Banerjee R
    Biochemistry; 2004 Jul; 43(26):8410-7. PubMed ID: 15222752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum catalysis in B12-dependent methylmalonyl-CoA mutase: experimental and computational insights.
    Banerjee R; Dybala-Defratyka A; Paneth P
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1333-9. PubMed ID: 16873121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of cobalt-carbon bond homolysis and hydrogen atom abstraction in adenosylcobalamin-dependent glutamate mutase.
    Marsh EN; Ballou DP
    Biochemistry; 1998 Aug; 37(34):11864-72. PubMed ID: 9718309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection of radical intermediates at the active site of adenosylcobalamin-dependent methylmalonyl-CoA mutase.
    Thomä NH; Evans PR; Leadlay PF
    Biochemistry; 2000 Aug; 39(31):9213-21. PubMed ID: 10924114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the mechanisms of adenosylcobalamin (coenzyme B12)-dependent enzymes from rapid chemical quench experiments.
    Marsh EN
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):336-42. PubMed ID: 19290858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton transfer from histidine 244 may facilitate the 1,2 rearrangement reaction in coenzyme B(12)-dependent methylmalonyl-CoA mutase.
    Maiti N; Widjaja L; Banerjee R
    J Biol Chem; 1999 Nov; 274(46):32733-7. PubMed ID: 10551831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilisation of methylene radicals by cob(II)alamin in coenzyme B12 dependent mutases.
    Buckel W; Kratky C; Golding BT
    Chemistry; 2005 Dec; 12(2):352-62. PubMed ID: 16304645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical mechanisms in adenosylcobalamin-dependent enzymes.
    Reed GH
    Curr Opin Chem Biol; 2004 Oct; 8(5):477-83. PubMed ID: 15450489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical use of Rossmann and TIM barrel architectures for controlling coenzyme B12 chemistry.
    Dowling DP; Croft AK; Drennan CL
    Annu Rev Biophys; 2012; 41():403-27. PubMed ID: 22577824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Arg100 in the active site of adenosylcobalamin-dependent glutamate mutase.
    Xia L; Ballou DP; Marsh EN
    Biochemistry; 2004 Mar; 43(11):3238-45. PubMed ID: 15023074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.