These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 17581956)
1. Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex. Goel A; Lee HK J Neurosci; 2007 Jun; 27(25):6692-700. PubMed ID: 17581956 [TBL] [Abstract][Full Text] [Related]
2. Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex. Rodriguez G; Mesik L; Gao M; Parkins S; Saha R; Lee HK J Neurosci; 2019 Sep; 39(39):7664-7673. PubMed ID: 31413075 [TBL] [Abstract][Full Text] [Related]
3. Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex. Petrus E; Anguh TT; Pho H; Lee A; Gammon N; Lee HK J Neurophysiol; 2011 Nov; 106(5):2499-505. PubMed ID: 21813745 [TBL] [Abstract][Full Text] [Related]
4. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335 [TBL] [Abstract][Full Text] [Related]
5. Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex. Zhong LR; Chen X; Park E; Südhof TC; Chen L J Neurosci; 2018 Dec; 38(49):10454-10466. PubMed ID: 30355624 [TBL] [Abstract][Full Text] [Related]
6. A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex. Gao M; Sossa K; Song L; Errington L; Cummings L; Hwang H; Kuhl D; Worley P; Lee HK J Neurosci; 2010 May; 30(21):7168-78. PubMed ID: 20505084 [TBL] [Abstract][Full Text] [Related]
7. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Keck T; Keller GB; Jacobsen RI; Eysel UT; Bonhoeffer T; Hübener M Neuron; 2013 Oct; 80(2):327-34. PubMed ID: 24139037 [TBL] [Abstract][Full Text] [Related]
12. Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity. Ranson A; Cheetham CE; Fox K; Sengpiel F Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1311-6. PubMed ID: 22232689 [TBL] [Abstract][Full Text] [Related]
13. STAT1 regulates the homeostatic component of visual cortical plasticity via an AMPA receptor-mediated mechanism. Nagakura I; Van Wart A; Petravicz J; Tropea D; Sur M J Neurosci; 2014 Jul; 34(31):10256-63. PubMed ID: 25080587 [TBL] [Abstract][Full Text] [Related]
14. Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke. Stodieck SK; Greifzu F; Goetze B; Schmidt KF; Löwel S Exp Gerontol; 2014 Dec; 60():1-11. PubMed ID: 25220148 [TBL] [Abstract][Full Text] [Related]
15. Critical periods for experience-dependent synaptic scaling in visual cortex. Desai NS; Cudmore RH; Nelson SB; Turrigiano GG Nat Neurosci; 2002 Aug; 5(8):783-9. PubMed ID: 12080341 [TBL] [Abstract][Full Text] [Related]
16. Early visual experience prevents but cannot reverse deprivation-induced loss of refinement in adult superior colliculus. Carrasco MM; Pallas SL Vis Neurosci; 2006; 23(6):845-52. PubMed ID: 17266776 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity. Goel A; Xu LW; Snyder KP; Song L; Goenaga-Vazquez Y; Megill A; Takamiya K; Huganir RL; Lee HK PLoS One; 2011 Mar; 6(3):e18264. PubMed ID: 21483826 [TBL] [Abstract][Full Text] [Related]
18. Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period. Duffy KR; Lingley AJ; Holman KD; Mitchell DE J Comp Neurol; 2016 Sep; 524(13):2643-53. PubMed ID: 26878686 [TBL] [Abstract][Full Text] [Related]
19. Cannabinoid receptor blockade reveals parallel plasticity mechanisms in different layers of mouse visual cortex. Liu CH; Heynen AJ; Shuler MG; Bear MF Neuron; 2008 May; 58(3):340-5. PubMed ID: 18466745 [TBL] [Abstract][Full Text] [Related]