BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 17581956)

  • 1. Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex.
    Goel A; Lee HK
    J Neurosci; 2007 Jun; 27(25):6692-700. PubMed ID: 17581956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex.
    Rodriguez G; Mesik L; Gao M; Parkins S; Saha R; Lee HK
    J Neurosci; 2019 Sep; 39(39):7664-7673. PubMed ID: 31413075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex.
    Petrus E; Anguh TT; Pho H; Lee A; Gammon N; Lee HK
    J Neurophysiol; 2011 Nov; 106(5):2499-505. PubMed ID: 21813745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex.
    Zhong LR; Chen X; Park E; Südhof TC; Chen L
    J Neurosci; 2018 Dec; 38(49):10454-10466. PubMed ID: 30355624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex.
    Gao M; Sossa K; Song L; Errington L; Cummings L; Hwang H; Kuhl D; Worley P; Lee HK
    J Neurosci; 2010 May; 30(21):7168-78. PubMed ID: 20505084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo.
    Keck T; Keller GB; Jacobsen RI; Eysel UT; Bonhoeffer T; Hübener M
    Neuron; 2013 Oct; 80(2):327-34. PubMed ID: 24139037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity.
    Gilbert J; Shu S; Yang X; Lu Y; Zhu LQ; Man HY
    Acta Neuropathol Commun; 2016 Dec; 4(1):131. PubMed ID: 27955702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity.
    Lambo ME; Turrigiano GG
    J Neurosci; 2013 May; 33(20):8810-9. PubMed ID: 23678123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity.
    Ranson A; Cheetham CE; Fox K; Sengpiel F
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1311-6. PubMed ID: 22232689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex In Vivo.
    Barnes SJ; Sammons RP; Jacobsen RI; Mackie J; Keller GB; Keck T
    Neuron; 2015 Jun; 86(5):1290-303. PubMed ID: 26050045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STAT1 regulates the homeostatic component of visual cortical plasticity via an AMPA receptor-mediated mechanism.
    Nagakura I; Van Wart A; Petravicz J; Tropea D; Sur M
    J Neurosci; 2014 Jul; 34(31):10256-63. PubMed ID: 25080587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke.
    Stodieck SK; Greifzu F; Goetze B; Schmidt KF; Löwel S
    Exp Gerontol; 2014 Dec; 60():1-11. PubMed ID: 25220148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical periods for experience-dependent synaptic scaling in visual cortex.
    Desai NS; Cudmore RH; Nelson SB; Turrigiano GG
    Nat Neurosci; 2002 Aug; 5(8):783-9. PubMed ID: 12080341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early visual experience prevents but cannot reverse deprivation-induced loss of refinement in adult superior colliculus.
    Carrasco MM; Pallas SL
    Vis Neurosci; 2006; 23(6):845-52. PubMed ID: 17266776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.
    Goel A; Xu LW; Snyder KP; Song L; Goenaga-Vazquez Y; Megill A; Takamiya K; Huganir RL; Lee HK
    PLoS One; 2011 Mar; 6(3):e18264. PubMed ID: 21483826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period.
    Duffy KR; Lingley AJ; Holman KD; Mitchell DE
    J Comp Neurol; 2016 Sep; 524(13):2643-53. PubMed ID: 26878686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cannabinoid receptor blockade reveals parallel plasticity mechanisms in different layers of mouse visual cortex.
    Liu CH; Heynen AJ; Shuler MG; Bear MF
    Neuron; 2008 May; 58(3):340-5. PubMed ID: 18466745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of Peak Plasticity Induced by Brief Dark Exposure.
    Lingley AJ; Mitchell DE; Crowder NA; Duffy KR
    Neural Plast; 2019; 2019():3198285. PubMed ID: 31565047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.