BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17582490)

  • 21. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L; Güçeri S; Wen X; Gandhi M; Sun W
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic investigation of porogen size and content on scaffold morphometric parameters and properties.
    Lin-Gibson S; Cooper JA; Landis FA; Cicerone MT
    Biomacromolecules; 2007 May; 8(5):1511-8. PubMed ID: 17381151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Preparation and properties of novel human-like collagen-silk fibroin scaffold for blood vessel].
    Zhu C; Fan D; Ma X; Xue W; Hui J; Chen L; Duan Z; Ma P
    Sheng Wu Gong Cheng Xue Bao; 2009 Aug; 25(8):1225-33. PubMed ID: 19938461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a biodegradable electrospun polyurethane nanofiber scaffold: Mechanical properties and cytotoxicity.
    Yeganegi M; Kandel RA; Santerre JP
    Acta Biomater; 2010 Oct; 6(10):3847-55. PubMed ID: 20466079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prolongation of the degradation period and improvement of the angiogenesis of zein porous scaffolds in vivo.
    Wang HJ; Huang JC; Hou L; Miyazawa T; Wang JY
    J Mater Sci Mater Med; 2016 May; 27(5):92. PubMed ID: 26979976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones.
    Fu Q; Rahaman MN; Bal BS; Brown RF
    J Biomed Mater Res A; 2010 Jun; 93(4):1380-90. PubMed ID: 19911380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.
    Machado CB; Ventura JM; Lemos AF; Ferreira JM; Leite MF; Goes AM
    Biomed Mater; 2007 Jun; 2(2):124-31. PubMed ID: 18458445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite.
    Thomas V; Dean DR; Jose MV; Mathew B; Chowdhury S; Vohra YK
    Biomacromolecules; 2007 Feb; 8(2):631-7. PubMed ID: 17256900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds.
    Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J
    J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical stimulation of tendon tissue engineered constructs: effects on construct stiffness, repair biomechanics, and their correlation.
    Shearn JT; Juncosa-Melvin N; Boivin GP; Galloway MT; Goodwin W; Gooch C; Dunn MG; Butler DL
    J Biomech Eng; 2007 Dec; 129(6):848-54. PubMed ID: 18067388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical stimulation of tissue engineered tendon constructs: effect of scaffold materials.
    Nirmalanandhan VS; Dressler MR; Shearn JT; Juncosa-Melvin N; Rao M; Gooch C; Bradica G; Butler DL
    J Biomech Eng; 2007 Dec; 129(6):919-23. PubMed ID: 18067397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of biodegradable scaffolds based on patient-specific arterial configuration.
    Uchida T; Ikeda S; Oura H; Tada M; Nakano T; Fukuda T; Matsuda T; Negoro M; Arai F
    J Biotechnol; 2008 Jan; 133(2):213-8. PubMed ID: 17868940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.
    Przekora A; Palka K; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method.
    Lee SB; Kim YH; Chong MS; Hong SH; Lee YM
    Biomaterials; 2005 May; 26(14):1961-8. PubMed ID: 15576170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical properties of bioactive glass 9-93 fibres.
    Pirhonen E; Moimas L; Brink M
    Acta Biomater; 2006 Jan; 2(1):103-7. PubMed ID: 16701864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold.
    Wang S; Zhang Y; Wang H; Yin G; Dong Z
    Biomacromolecules; 2009 Aug; 10(8):2240-4. PubMed ID: 19722559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts.
    Figallo E; Flaibani M; Zavan B; Abatangelo G; Elvassore N
    Biotechnol Prog; 2007; 23(1):210-6. PubMed ID: 17269690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.