BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17582490)

  • 41. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure-property relationships of silk-modified mesoporous bioglass scaffolds.
    Wu C; Zhang Y; Zhu Y; Friis T; Xiao Y
    Biomaterials; 2010 May; 31(13):3429-38. PubMed ID: 20122721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds.
    Eslaminejad MB; Mirzadeh H; Mohamadi Y; Nickmahzar A
    J Tissue Eng Regen Med; 2007; 1(6):417-24. PubMed ID: 18247428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility.
    Dong J; Sun Q; Wang JY
    Biomaterials; 2004 Aug; 25(19):4691-7. PubMed ID: 15120515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?
    Tayton E; Purcell M; Aarvold A; Smith JO; Kalra S; Briscoe A; Shakesheff K; Howdle SM; Dunlop DG; Oreffo RO
    Acta Biomater; 2012 May; 8(5):1918-27. PubMed ID: 22307029
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures.
    Malafaya PB; Santos TC; van Griensven M; Reis RL
    Biomaterials; 2008 Oct; 29(29):3914-26. PubMed ID: 18649938
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds.
    Jiang Q; Reddy N; Yang Y
    Acta Biomater; 2010 Oct; 6(10):4042-51. PubMed ID: 20438870
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The use of zein and Shuanghuangbu for periodontal tissue engineering.
    Yan-Zhi X; Jing-Jing W; Chen YP; Liu J; Li N; Yang FY
    Int J Oral Sci; 2010 Sep; 2(3):142-8. PubMed ID: 21125792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of hyaluronic acid-based scaffolds for brain tissue engineering.
    Wang TW; Spector M
    Acta Biomater; 2009 Sep; 5(7):2371-84. PubMed ID: 19403351
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication and characterization of porous EH scaffolds and EH-PEG bilayers.
    Falco EE; Coates EE; Li E; Roth JS; Fisher JP
    J Biomed Mater Res A; 2011 Jun; 97(3):264-71. PubMed ID: 21442727
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering.
    Krebs MD; Sutter KA; Lin AS; Guldberg RE; Alsberg E
    Acta Biomater; 2009 Oct; 5(8):2847-59. PubMed ID: 19446056
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration.
    Yang Y; Gu X; Tan R; Hu W; Wang X; Zhang P; Zhang T
    Biotechnol Lett; 2004 Dec; 26(23):1793-7. PubMed ID: 15672216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength.
    Fritsch A; Dormieux L; Hellmich C; Sanahuja J
    J Biomed Mater Res A; 2009 Jan; 88(1):149-61. PubMed ID: 18286602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: an experimental and numerical analysis.
    Moroni L; Poort G; Van Keulen F; de Wijn JR; van Blitterswijk CA
    J Biomed Mater Res A; 2006 Sep; 78(3):605-14. PubMed ID: 16758454
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Density-property relationships in mineralized collagen-glycosaminoglycan scaffolds.
    Kanungo BP; Gibson LJ
    Acta Biomater; 2009 May; 5(4):1006-18. PubMed ID: 19121982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates.
    Guelcher SA; Srinivasan A; Dumas JE; Didier JE; McBride S; Hollinger JO
    Biomaterials; 2008 Apr; 29(12):1762-75. PubMed ID: 18255140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and evaluation of bioactive 3D zein and zein/nano-hydroxyapatite scaffolds for bone tissue engineering application.
    Zaersabet M; Salehi Z; Hadavi M; Talesh Sasani S; Rastgoo Noestali F
    Proc Inst Mech Eng H; 2022 Jun; 236(6):785-793. PubMed ID: 35422162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.