BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17582490)

  • 61. Design variables for mechanical properties of bone tissue scaffolds.
    Howk D; Chu TM
    Biomed Sci Instrum; 2006; 42():278-83. PubMed ID: 16817621
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Porous titanium for biomedical applications: an experimental study on rabbits.
    de Vasconcellos LM; Leite DD; Nascimento FO; de Vasconcellos LG; Graça ML; Carvalho YR; Cairo CA
    Med Oral Patol Oral Cir Bucal; 2010 Mar; 15(2):e407-12. PubMed ID: 19767696
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cancellous bone from porous Ti6Al4V by multiple coating technique.
    Li JP; Li SH; Van Blitterswijk CA; de Groot K
    J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.
    Ahmed I; Parsons AJ; Palmer G; Knowles JC; Walker GS; Rudd CD
    Acta Biomater; 2008 Sep; 4(5):1307-14. PubMed ID: 18448401
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study.
    Kasten P; Beyen I; Niemeyer P; Luginbühl R; Bohner M; Richter W
    Acta Biomater; 2008 Nov; 4(6):1904-15. PubMed ID: 18571999
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering.
    Wang H; Li J; Yang H; Liu C; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():71-5. PubMed ID: 24857467
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Construction of biocompatible porous tissue scaffold from the decellularized umbilical artery.
    Xin Y; Wu G; Wu M; Zhang X; Velot E; Decot V; Cui W; Huang Y; Stoltz JF; Du J; Li N
    Biomed Mater Eng; 2015; 25(1 Suppl):65-71. PubMed ID: 25538057
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering].
    Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fibrous poly(chitosan-g-DL-lactic acid) scaffolds prepared via electro-wet-spinning.
    Wan Y; Cao X; Zhang S; Wang S; Wu Q
    Acta Biomater; 2008 Jul; 4(4):876-86. PubMed ID: 18356124
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering.
    Tan H; Wu J; Lao L; Gao C
    Acta Biomater; 2009 Jan; 5(1):328-37. PubMed ID: 18723417
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improvement of mechanical properties of zein porous scaffold by quenching/electrospun fiber reinforcement.
    Liu C; Yang H; Shen NA; Li J; Chen Y; Wang JY
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34517347
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Density-property relationships in collagen-glycosaminoglycan scaffolds.
    Kanungo BP; Gibson LJ
    Acta Biomater; 2010 Feb; 6(2):344-53. PubMed ID: 19770077
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhancement of mechanical properties, microstructure, and antimicrobial activities of zein films cross-linked using succinic anhydride, eugenol, and citric Acid.
    Khalil AA; Deraz SF; Elrahman SA; El-Fawal G
    Prep Biochem Biotechnol; 2015 Aug; 45(6):551-67. PubMed ID: 25036665
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Porosity and mechanical properties relationship in PCL porous scaffolds.
    Guarino V; Causa F; Ambrosio L
    J Appl Biomater Biomech; 2007; 5(3):149-57. PubMed ID: 20799184
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The in vivo bone formation by mesenchymal stem cells in zein scaffolds.
    Tu J; Wang H; Li H; Dai K; Wang J; Zhang X
    Biomaterials; 2009 Sep; 30(26):4369-76. PubMed ID: 19539987
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique].
    Xiong Y; Chen P; Sun J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):247-50. PubMed ID: 22616167
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Assessment of the mechanical properties and biocompatibility of a new electrospun polyurethane vascular prosthesis].
    He W; Hu ZJ; Xu AW; Yin HH; Wang JS; Ye JL; Wang SM
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Dec; 31(12):2006-11. PubMed ID: 22200701
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers.
    Yang J; Webb AR; Pickerill SJ; Hageman G; Ameer GA
    Biomaterials; 2006 Mar; 27(9):1889-98. PubMed ID: 16290904
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Orthogonal test analysis of compressive strength of porous hydroxylapatite prepared by gel-casting process].
    Han Y; Li M; Lü Y; Song Y; Chen Y; Low H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Oct; 21(5):704-7. PubMed ID: 15553840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.