These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
558 related articles for article (PubMed ID: 17582747)
1. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Yuan SJ; Pehkonen SO Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747 [TBL] [Abstract][Full Text] [Related]
2. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Li H; Zhou E; Zhang D; Xu D; Xia J; Yang C; Feng H; Jiang Z; Li X; Gu T; Yang K Sci Rep; 2016 Feb; 6():20190. PubMed ID: 26846970 [TBL] [Abstract][Full Text] [Related]
3. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848 [TBL] [Abstract][Full Text] [Related]
4. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Xu D; Xia J; Zhou E; Zhang D; Li H; Yang C; Li Q; Lin H; Li X; Yang K Bioelectrochemistry; 2017 Feb; 113():1-8. PubMed ID: 27578208 [TBL] [Abstract][Full Text] [Related]
5. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media. Herting G; Wallinder IO; Leygraf C J Environ Monit; 2008 Sep; 10(9):1084-91. PubMed ID: 18728902 [TBL] [Abstract][Full Text] [Related]
6. Surface characterization of three marine bacterial strains by Fourier transform IR, X-ray photoelectron spectroscopy, and time-of-flight secondary-ion mass spectrometry, correlation with adhesion on stainless steel surfaces. Pradier CM; Rubio C; Poleunis C; Bertrand P; Marcus P; Compère C J Phys Chem B; 2005 May; 109(19):9540-9. PubMed ID: 16852148 [TBL] [Abstract][Full Text] [Related]
7. Chemical, corrosion and topographical analysis of stainless steel implants after different implantation periods. Chrzanowski W; Armitage DA; Knowles JC; Szade J; Korlacki W; Marciniak J J Biomater Appl; 2008 Jul; 23(1):51-71. PubMed ID: 18467745 [TBL] [Abstract][Full Text] [Related]
8. The effect of Pseudomonas NCIMB 2021 biofilm on AISI 316 stainless steel. Beech IB; Zinkevich V; Hanjangsit L; Gubner R; Avci R Biofouling; 2000; 15(1-3):3-12. PubMed ID: 22115287 [TBL] [Abstract][Full Text] [Related]
9. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm. Li Z; Huang L; Hao W; Yang J; Qian H; Zhang D Bioelectrochemistry; 2022 Aug; 146():108130. PubMed ID: 35397438 [TBL] [Abstract][Full Text] [Related]
10. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. Lopes FA; Morin P; Oliveira R; Melo LF J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232 [TBL] [Abstract][Full Text] [Related]
11. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison. Herting G; Wallinder IO; Leygraf C J Environ Monit; 2008 Sep; 10(9):1092-8. PubMed ID: 18728903 [TBL] [Abstract][Full Text] [Related]
12. Surface nanocrystallization for bacterial control. Yu B; Lesiuk A; Davis E; Irvin RT; Li DY Langmuir; 2010 Jul; 26(13):10930-4. PubMed ID: 20433185 [TBL] [Abstract][Full Text] [Related]
13. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms. Simões M; Simoes LC; Pereira MO; Vieira MJ Biofouling; 2008; 24(5):339-49. PubMed ID: 18576180 [TBL] [Abstract][Full Text] [Related]
14. Analyses of rampant corrosion in stainless-steel retainers of orthodontic patients. Kusy RP; Ambrose WW; LaVanier LA; Newman JG; Whitley JQ J Biomed Mater Res; 2002 Oct; 62(1):106-18. PubMed ID: 12124792 [TBL] [Abstract][Full Text] [Related]
15. Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium Macrococcus equipercicus. Arun D; Vimala R; Devendranath Ramkumar K Bioelectrochemistry; 2020 Oct; 135():107546. PubMed ID: 32413811 [TBL] [Abstract][Full Text] [Related]
16. Evolution of the passive film and organic constituents at the surface of stainless steel immersed in fresh water. Landoulsi J; Genet MJ; Richard C; El Kirat K; Pulvin S; Rouxhet PG J Colloid Interface Sci; 2008 Feb; 318(2):278-89. PubMed ID: 18021794 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation. Shahryari A; Omanovic S; Szpunar JA J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556 [TBL] [Abstract][Full Text] [Related]
18. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa. Qian HC; Chang WW; Liu WL; Cui TY; Li Z; Guo DW; Kwok CT; Tam LM; Zhang DW Bioelectrochemistry; 2022 Feb; 143():107953. PubMed ID: 34583211 [TBL] [Abstract][Full Text] [Related]
19. Force measurements of bacterial adhesion on metals using a cell probe atomic force microscope. Sheng X; Ting YP; Pehkonen SO J Colloid Interface Sci; 2007 Jun; 310(2):661-9. PubMed ID: 17321534 [TBL] [Abstract][Full Text] [Related]
20. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. Lekbach Y; Li Z; Xu D; El Abed S; Dong Y; Liu D; Gu T; Koraichi SI; Yang K; Wang F Bioelectrochemistry; 2019 Aug; 128():193-203. PubMed ID: 31004913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]