BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 17582747)

  • 1. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm.
    Li H; Zhou E; Zhang D; Xu D; Xia J; Yang C; Feng H; Jiang Z; Li X; Gu T; Yang K
    Sci Rep; 2016 Feb; 6():20190. PubMed ID: 26846970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes.
    Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN
    Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.
    Xu D; Xia J; Zhou E; Zhang D; Li H; Yang C; Li Q; Lin H; Li X; Yang K
    Bioelectrochemistry; 2017 Feb; 113():1-8. PubMed ID: 27578208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media.
    Herting G; Wallinder IO; Leygraf C
    J Environ Monit; 2008 Sep; 10(9):1084-91. PubMed ID: 18728902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface characterization of three marine bacterial strains by Fourier transform IR, X-ray photoelectron spectroscopy, and time-of-flight secondary-ion mass spectrometry, correlation with adhesion on stainless steel surfaces.
    Pradier CM; Rubio C; Poleunis C; Bertrand P; Marcus P; Compère C
    J Phys Chem B; 2005 May; 109(19):9540-9. PubMed ID: 16852148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical, corrosion and topographical analysis of stainless steel implants after different implantation periods.
    Chrzanowski W; Armitage DA; Knowles JC; Szade J; Korlacki W; Marciniak J
    J Biomater Appl; 2008 Jul; 23(1):51-71. PubMed ID: 18467745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of Pseudomonas NCIMB 2021 biofilm on AISI 316 stainless steel.
    Beech IB; Zinkevich V; Hanjangsit L; Gubner R; Avci R
    Biofouling; 2000; 15(1-3):3-12. PubMed ID: 22115287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm.
    Li Z; Huang L; Hao W; Yang J; Qian H; Zhang D
    Bioelectrochemistry; 2022 Aug; 146():108130. PubMed ID: 35397438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.
    Lopes FA; Morin P; Oliveira R; Melo LF
    J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison.
    Herting G; Wallinder IO; Leygraf C
    J Environ Monit; 2008 Sep; 10(9):1092-8. PubMed ID: 18728903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface nanocrystallization for bacterial control.
    Yu B; Lesiuk A; Davis E; Irvin RT; Li DY
    Langmuir; 2010 Jul; 26(13):10930-4. PubMed ID: 20433185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms.
    Simões M; Simoes LC; Pereira MO; Vieira MJ
    Biofouling; 2008; 24(5):339-49. PubMed ID: 18576180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyses of rampant corrosion in stainless-steel retainers of orthodontic patients.
    Kusy RP; Ambrose WW; LaVanier LA; Newman JG; Whitley JQ
    J Biomed Mater Res; 2002 Oct; 62(1):106-18. PubMed ID: 12124792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium Macrococcus equipercicus.
    Arun D; Vimala R; Devendranath Ramkumar K
    Bioelectrochemistry; 2020 Oct; 135():107546. PubMed ID: 32413811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the passive film and organic constituents at the surface of stainless steel immersed in fresh water.
    Landoulsi J; Genet MJ; Richard C; El Kirat K; Pulvin S; Rouxhet PG
    J Colloid Interface Sci; 2008 Feb; 318(2):278-89. PubMed ID: 18021794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force measurements of bacterial adhesion on metals using a cell probe atomic force microscope.
    Sheng X; Ting YP; Pehkonen SO
    J Colloid Interface Sci; 2007 Jun; 310(2):661-9. PubMed ID: 17321534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm.
    Lekbach Y; Li Z; Xu D; El Abed S; Dong Y; Liu D; Gu T; Koraichi SI; Yang K; Wang F
    Bioelectrochemistry; 2019 Aug; 128():193-203. PubMed ID: 31004913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina.
    Qian H; Liu S; Wang P; Huang Y; Lou Y; Huang L; Jiang C; Zhang D
    Bioelectrochemistry; 2020 Dec; 136():107635. PubMed ID: 32866835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.