BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 17583407)

  • 1. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases.
    Miyano K; Sumimoto H
    Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators.
    Ueno N; Takeya R; Miyano K; Kikuchi H; Sumimoto H
    J Biol Chem; 2005 Jun; 280(24):23328-39. PubMed ID: 15824103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism underlying activation of superoxide-producing NADPH oxidases: roles for their regulatory proteins.
    Sumimoto H; Ueno N; Yamasaki T; Taura M; Takeya R
    Jpn J Infect Dis; 2004 Oct; 57(5):S24-5. PubMed ID: 15507762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1.
    Miyano K; Ueno N; Takeya R; Sumimoto H
    J Biol Chem; 2006 Aug; 281(31):21857-21868. PubMed ID: 16762923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and function of Noxo1gamma, an alternative splicing form of the NADPH oxidase organizer 1.
    Takeya R; Taura M; Yamasaki T; Naito S; Sumimoto H
    FEBS J; 2006 Aug; 273(16):3663-77. PubMed ID: 16911517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of novel superoxide-producing NAD(P)H oxidases.
    Takeya R; Sumimoto H
    Antioxid Redox Signal; 2006; 8(9-10):1523-32. PubMed ID: 16987008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nox3 regulation by NOXO1, p47phox, and p67phox.
    Cheng G; Ritsick D; Lambeth JD
    J Biol Chem; 2004 Aug; 279(33):34250-5. PubMed ID: 15181005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phagocyte NADPH oxidase p67-phox possesses a novel carboxylterminal binding site for the GTPases Rac2 and Cdc42.
    Faris SL; Rinckel LA; Huang J; Hong YR; Kleinberg ME
    Biochem Biophys Res Commun; 1998 Jun; 247(2):271-6. PubMed ID: 9642115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taurine chloramine inhibits PMA-stimulated superoxide production in human neutrophils perhaps by inhibiting phosphorylation and translocation of p47(phox).
    Choi HS; Cha YN; Kim C
    Int Immunopharmacol; 2006 Sep; 6(9):1431-40. PubMed ID: 16846837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of superoxide-producing NADPH oxidases in nonphagocytic cells.
    Takeya R; Ueno N; Sumimoto H
    Methods Enzymol; 2006; 406():456-68. PubMed ID: 16472678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable stabilization of neutrophil NADPH oxidase using RacQ61L and a p67phox-p47phox fusion protein.
    Miyano K; Fukuda H; Ebisu K; Tamura M
    Biochemistry; 2003 Jan; 42(1):184-90. PubMed ID: 12515553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular composition and regulation of the Nox family NAD(P)H oxidases.
    Sumimoto H; Miyano K; Takeya R
    Biochem Biophys Res Commun; 2005 Dec; 338(1):677-86. PubMed ID: 16157295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between the SH3 domains and C-terminal proline-rich region in NADPH oxidase organizer 1 (Noxo1).
    Yamamoto A; Kami K; Takeya R; Sumimoto H
    Biochem Biophys Res Commun; 2007 Jan; 352(2):560-5. PubMed ID: 17126813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent labeling of the leukocyte NADPH oxidase subunit p47(phox): evidence for amphiphile-induced conformational changes.
    Park HS; Park JW
    Arch Biochem Biophys; 1998 Dec; 360(2):165-72. PubMed ID: 9851827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent.
    Price MO; Atkinson SJ; Knaus UG; Dinauer MC
    J Biol Chem; 2002 May; 277(21):19220-8. PubMed ID: 11896053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane association of Rac is required for high activity of the respiratory burst oxidase.
    Kreck ML; Freeman JL; Abo A; Lambeth JD
    Biochemistry; 1996 Dec; 35(49):15683-92. PubMed ID: 8961931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase.
    Toporik A; Gorzalczany Y; Hirshberg M; Pick E; Lotan O
    Biochemistry; 1998 May; 37(20):7147-56. PubMed ID: 9585526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of five triterpenoid compounds isolated from root bark of Aralia elata on stimulus-induced superoxide generation, tyrosyl or serine/threonine phosphorylation and translocation of p47(phox), p67(phox), and rac to cell membrane in human neutrophils.
    Yagi-Chaves SN; Liu G; Yamashita K; Manabe M; Song SJ; Kodama H
    Arch Biochem Biophys; 2006 Feb; 446(1):84-90. PubMed ID: 16405902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox.
    Zhou H; Zhang F; Chen SH; Zhang D; Wilson B; Hong JS; Gao HM
    Free Radic Biol Med; 2012 Jan; 52(2):303-13. PubMed ID: 22094225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct interaction of actin with p47(phox) of neutrophil NADPH oxidase.
    Tamura M; Kai T; Tsunawaki S; Lambeth JD; Kameda K
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1186-90. PubMed ID: 11027608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.