BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 17583510)

  • 1. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control.
    Kemmerling B; Schwedt A; Rodriguez P; Mazzotta S; Frank M; Qamar SA; Mengiste T; Betsuyaku S; Parker JE; Müssig C; Thomma BP; Albrecht C; de Vries SC; Hirt H; Nürnberger T
    Curr Biol; 2007 Jul; 17(13):1116-22. PubMed ID: 17583510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways.
    He K; Gou X; Yuan T; Lin H; Asami T; Yoshida S; Russell SD; Li J
    Curr Biol; 2007 Jul; 17(13):1109-15. PubMed ID: 17600708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA.
    Kim TW; Lee SM; Joo SH; Yun HS; Lee Y; Kaufman PB; Kirakosyan A; Kim SH; Nam KH; Lee JS; Chang SC; Kim SK
    Plant Cell Environ; 2007 Jun; 30(6):679-89. PubMed ID: 17470144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1.
    Song L; Shi QM; Yang XH; Xu ZH; Xue HW
    Cell Res; 2009 Jul; 19(7):864-76. PubMed ID: 19532123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling.
    Wang X; Kota U; He K; Blackburn K; Li J; Goshe MB; Huber SC; Clouse SD
    Dev Cell; 2008 Aug; 15(2):220-35. PubMed ID: 18694562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in understanding brassinosteroid signaling.
    Karlova R; de Vries SC
    Sci STKE; 2006 Sep; 2006(354):pe36. PubMed ID: 17003466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brassinosteroid-independent functions of the BRI1-associated kinase BAK1/SERK3.
    Kemmerling B; Nürnberger T
    Plant Signal Behav; 2008 Feb; 3(2):116-8. PubMed ID: 19704727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss-of-function mutations in the Arabidopsis heterotrimeric G-protein alpha subunit enhance the developmental defects of brassinosteroid signaling and biosynthesis mutants.
    Gao Y; Wang S; Asami T; Chen JG
    Plant Cell Physiol; 2008 Jul; 49(7):1013-24. PubMed ID: 18499742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner.
    Domínguez-Ferreras A; Kiss-Papp M; Jehle AK; Felix G; Chinchilla D
    Plant Physiol; 2015 Jul; 168(3):1106-21. PubMed ID: 25944825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina.
    Llorente F; Alonso-Blanco C; Sánchez-Rodriguez C; Jorda L; Molina A
    Plant J; 2005 Jul; 43(2):165-80. PubMed ID: 15998304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BRI1 is a critical component of a plasma-membrane receptor for plant steroids.
    Wang ZY; Seto H; Fujioka S; Yoshida S; Chory J
    Nature; 2001 Mar; 410(6826):380-3. PubMed ID: 11268216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana.
    Zhang S; Yang X; Sun M; Sun F; Deng S; Dong H
    J Integr Plant Biol; 2009 Feb; 51(2):167-74. PubMed ID: 19200155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BRing it on: new insights into the mechanism of brassinosteroid action.
    Nemhauser JL; Chory J
    J Exp Bot; 2004 Jan; 55(395):265-70. PubMed ID: 14673032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steroid signaling in plants: from the cell surface to the nucleus.
    Friedrichsen D; Chory J
    Bioessays; 2001 Nov; 23(11):1028-36. PubMed ID: 11746219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamic mathematical model to clarify signaling circuitry underlying programmed cell death control in Arabidopsis disease resistance.
    Agrawal V; Zhang C; Shapiro AD; Dhurjati PS
    Biotechnol Prog; 2004; 20(2):426-42. PubMed ID: 15058987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant brassinosteroid hormones.
    Asami T; Nakano T; Fujioka S
    Vitam Horm; 2005; 72():479-504. PubMed ID: 16492480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens.
    Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F
    Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis.
    Thatcher LF; Manners JM; Kazan K
    Plant J; 2009 Jun; 58(6):927-39. PubMed ID: 19220788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mammalian steroid action inhibitor spironolactone retards plant growth by inhibition of brassinosteroid action and induces light-induced gene expression in the dark.
    Asami T; Oh K; Jikumaru Y; Shimada Y; Kaneko I; Nakano T; Takatsuto S; Fujioka S; Yoshida S
    J Steroid Biochem Mol Biol; 2004 Jun; 91(1-2):41-7. PubMed ID: 15261306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BAK7 displays unequal genetic redundancy with BAK1 in brassinosteroid signaling and early senescence in Arabidopsis.
    Jeong YJ; Shang Y; Kim BH; Kim SY; Song JH; Lee JS; Lee MM; Li J; Nam KH
    Mol Cells; 2010 Mar; 29(3):259-66. PubMed ID: 20108170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.