These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17583738)

  • 1. Assembly of the cytochrome bo3 complex.
    Stenberg F; von Heijne G; Daley DO
    J Mol Biol; 2007 Aug; 371(3):765-73. PubMed ID: 17583738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme incorporation into the cytochrome bo3 occurs at a late stage of assembly.
    Palombo I; Daley DO
    FEBS Lett; 2012 Nov; 586(23):4197-202. PubMed ID: 23089180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilus chaperones represent a new type of protein-folding catalyst.
    Vetsch M; Puorger C; Spirig T; Grauschopf U; Weber-Ban EU; Glockshuber R
    Nature; 2004 Sep; 431(7006):329-33. PubMed ID: 15372038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric and electrostatic protein-protein interactions regulate the assembly of the heterohexameric Tim9-Tim10 complex.
    Ivanova E; Lu H
    J Mol Biol; 2008 Jun; 379(3):609-16. PubMed ID: 18462749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits.
    Gossert AD; Bettendorff P; Puorger C; Vetsch M; Herrmann T; Glockshuber R; Wüthrich K
    J Mol Biol; 2008 Jan; 375(3):752-63. PubMed ID: 18048056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamates 99 and 107 in transmembrane helix III of subunit I of cytochrome bd are critical for binding of the heme b595-d binuclear center and enzyme activity.
    Mogi T; Endou S; Akimoto S; Morimoto-Tadokoro M; Miyoshi H
    Biochemistry; 2006 Dec; 45(51):15785-92. PubMed ID: 17176101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the ternary FimC-FimF(t)-FimD(N) complex indicates conserved pilus chaperone-subunit complex recognition by the usher FimD.
    Eidam O; Dworkowski FS; Glockshuber R; Grütter MG; Capitani G
    FEBS Lett; 2008 Mar; 582(5):651-5. PubMed ID: 18242189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaperone-driven proteasome assembly.
    Rosenzweig R; Glickman MH
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):807-12. PubMed ID: 18793141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.
    Senger M; Stripp ST; Soboh B
    J Biol Chem; 2017 Jul; 292(28):11670-11681. PubMed ID: 28539366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition.
    Cabrera R; Ambrosio AL; Garratt RC; Guixé V; Babul J
    J Mol Biol; 2008 Nov; 383(3):588-602. PubMed ID: 18762190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural plasticity of peptidyl-prolyl isomerase sFkpA is a key to its chaperone function as revealed by solution NMR.
    Hu K; Galius V; Pervushin K
    Biochemistry; 2006 Oct; 45(39):11983-91. PubMed ID: 17002297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding kinetic pathway of phosphofructokinase-2 from Escherichia coli: a homodimeric enzyme with a complex domain organization.
    Baez M; Wilson CA; Babul J
    FEBS Lett; 2011 Jul; 585(14):2158-64. PubMed ID: 21627967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism.
    Stenmark P; Moche M; Gurmu D; Nordlund P
    J Mol Biol; 2007 Oct; 373(1):48-64. PubMed ID: 17765262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and molecular characterization of the prefoldin beta subunit from Thermococcus strain KS-1.
    Kida H; Sugano Y; Iizuka R; Fujihashi M; Yohda M; Miki K
    J Mol Biol; 2008 Nov; 383(3):465-74. PubMed ID: 18775436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subunit II of the cytochrome bo3 ubiquinol oxidase from Escherichia coli is a lipoprotein.
    Ma J; Katsonouri A; Gennis RB
    Biochemistry; 1997 Sep; 36(38):11298-303. PubMed ID: 9298948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry. A missing link in membrane protein evolution.
    Poolman B; Geertsma ER; Slotboom DJ
    Science; 2007 Mar; 315(5816):1229-31. PubMed ID: 17332400
    [No Abstract]   [Full Text] [Related]  

  • 17. Mutations in subunits of the Escherichia coli twin-arginine translocase block function via differing effects on translocation activity or tat complex structure.
    Barrett CM; Mangels D; Robinson C
    J Mol Biol; 2005 Mar; 347(2):453-63. PubMed ID: 15740752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of an essential component of the outer membrane protein assembly machine.
    Kim S; Malinverni JC; Sliz P; Silhavy TJ; Harrison SC; Kahne D
    Science; 2007 Aug; 317(5840):961-4. PubMed ID: 17702946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of a type III secretion system filament protein in complex with its chaperone.
    Yip CK; Finlay BB; Strynadka NC
    Nat Struct Mol Biol; 2005 Jan; 12(1):75-81. PubMed ID: 15619638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The TatA subunit of Escherichia coli twin-arginine translocase has an N-in topology.
    Chan CS; Zlomislic MR; Tieleman DP; Turner RJ
    Biochemistry; 2007 Jun; 46(25):7396-404. PubMed ID: 17536842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.