BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17584031)

  • 1. Microarray-based identification of new targets for specific therapies in pediatric leukemia.
    den Boer ML; Pieters R
    Curr Drug Targets; 2007 Jun; 8(6):761-4. PubMed ID: 17584031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacogenomics of acute leukemia.
    Cheok MH; Lugthart S; Evans WE
    Annu Rev Pharmacol Toxicol; 2006; 46():317-53. PubMed ID: 16402908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relapse of acute lymphoblastic leukemia in children in the context of microarray analyses.
    Szczepanek J; Styczyński J; Haus O; Tretyn A; Wysocki M
    Arch Immunol Ther Exp (Warsz); 2011 Feb; 59(1):61-8. PubMed ID: 21246408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic and transcriptomic profiles and in vitro resistance to mitoxantrone and idarubicin in pediatric acute leukemias.
    Laskowska J; Lewandowska-Bieniek J; Szczepanek J; Styczyński J; Tretyn A
    J Gene Med; 2016 Aug; 18(8):165-79. PubMed ID: 27280600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR.
    Handschuh L; Kaźmierczak M; Milewski MC; Góralski M; Łuczak M; Wojtaszewska M; Uszczyńska-Ratajczak B; Lewandowski K; Komarnicki M; Figlerowicz M
    Int J Oncol; 2018 Mar; 52(3):656-678. PubMed ID: 29286103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of gene expression profiling in the management of childhood acute lymphoblastic leukemia.
    Bhojwani D; Moskowitz N; Raetz EA; Carroll WL
    Paediatr Drugs; 2007; 9(3):149-56. PubMed ID: 17523695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment.
    Mesrian Tanha H; Mojtabavi Naeini M; Rahgozar S; Moafi A; Honardoost MA
    Tumour Biol; 2016 Jun; 37(6):7861-72. PubMed ID: 26700663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia.
    Steinbach D; Schramm A; Eggert A; Onda M; Dawczynski K; Rump A; Pastan I; Wittig S; Pfaffendorf N; Voigt A; Zintl F; Gruhn B
    Clin Cancer Res; 2006 Apr; 12(8):2434-41. PubMed ID: 16638849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Childhood and adolescent lymphoid and myeloid leukemia.
    Pui CH; Schrappe M; Ribeiro RC; Niemeyer CM
    Hematology Am Soc Hematol Educ Program; 2004; ():118-45. PubMed ID: 15561680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building better therapy for children with acute lymphoblastic leukemia.
    Carroll WL; Raetz EA
    Cancer Cell; 2005 Apr; 7(4):289-91. PubMed ID: 15837616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status.
    Andersson A; Ritz C; Lindgren D; Edén P; Lassen C; Heldrup J; Olofsson T; Råde J; Fontes M; Porwit-Macdonald A; Behrendtz M; Höglund M; Johansson B; Fioretos T
    Leukemia; 2007 Jun; 21(6):1198-203. PubMed ID: 17410184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of multidrug resistance (MDR) proteins and in vitro drug resistance in acute leukemias.
    Fazlina N; Maha A; Jamal R; Zarina AL; Cheong SK; Hamidah H; Ainoon O; Zulkifli SZ; Hamidah NH
    Hematology; 2007 Feb; 12(1):33-7. PubMed ID: 17364990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Candidate Genes for Lack of Sensitivity to Therapy in Pediatric Leukemias.
    Bereza W; Szczepanek J; Laskowska J; Tretyn A
    Curr Cancer Drug Targets; 2017; 17(4):333-343. PubMed ID: 27928969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytoskeleton as a therapeutic target in childhood acute leukemia: obstacles and opportunities.
    Liaw TY; Chang MH; Kavallaris M
    Curr Drug Targets; 2007 Jun; 8(6):739-49. PubMed ID: 17584029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical nanomedicine: a solution to the chemotherapy conundrum in pediatric leukemia therapy.
    Krishnan V; Rajasekaran AK
    Clin Pharmacol Ther; 2014 Feb; 95(2):168-78. PubMed ID: 24013811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABCB1 and ABCG2 proteins, their functional activity and gene expression in concert with drug sensitivity of leukemia cells.
    Svirnovski AI; Shman TV; Serhiyenka TF; Savitski VP; Smolnikova VV; Fedasenka UU
    Hematology; 2009 Aug; 14(4):204-12. PubMed ID: 19635183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-analysis of gene expression in relapsed childhood B-acute lymphoblastic leukemia.
    Chow YP; Alias H; Jamal R
    BMC Cancer; 2017 Feb; 17(1):120. PubMed ID: 28183295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of rs62527607 [GT] single nucleotide polymorphism located in BAALC gene in children with acute leukemia using mismatch PCR-RFLP.
    Nadimi M; Rahgozar S; Moafi A; Tavassoli M; Mesrian Tanha H
    Cancer Genet; 2016; 209(7-8):348-53. PubMed ID: 27372260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia.
    Pierro J; Hogan LE; Bhatla T; Carroll WL
    Expert Rev Anticancer Ther; 2017 Aug; 17(8):725-736. PubMed ID: 28649891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FLT3 as a therapeutic target in childhood acute leukemia.
    Stubbs MC; Armstrong SA
    Curr Drug Targets; 2007 Jun; 8(6):703-14. PubMed ID: 17584026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.