These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 17584255)
1. Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. Sørensen JG; Nielsen MM; Loeschcke V J Evol Biol; 2007 Jul; 20(4):1624-36. PubMed ID: 17584255 [TBL] [Abstract][Full Text] [Related]
2. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. Bubliy OA; Loeschcke V J Evol Biol; 2005 Jul; 18(4):789-803. PubMed ID: 16033550 [TBL] [Abstract][Full Text] [Related]
3. Selection for cold resistance alters gene transcript levels in Drosophila melanogaster. Telonis-Scott M; Hallas R; McKechnie SW; Wee CW; Hoffmann AA J Insect Physiol; 2009 Jun; 55(6):549-55. PubMed ID: 19232407 [TBL] [Abstract][Full Text] [Related]
4. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Hoffmann AA; Hallas R; Anderson AR; Telonis-Scott M J Evol Biol; 2005 Jul; 18(4):804-10. PubMed ID: 16033551 [TBL] [Abstract][Full Text] [Related]
5. Stress specific correlated responses in fat content, Hsp70 and dopamine levels in Drosophila melanogaster selected for resistance to environmental stress. Sørensen JG; Vermeulen CJ; Flik G; Loeschcke V J Insect Physiol; 2009 Aug; 55(8):700-6. PubMed ID: 19446560 [TBL] [Abstract][Full Text] [Related]
6. A new set of laboratory-selected Drosophila melanogaster lines for the analysis of desiccation resistance: response to selection, physiology and correlated responses. Telonis-Scott M; Guthridge KM; Hoffmann AA J Exp Biol; 2006 May; 209(Pt 10):1837-47. PubMed ID: 16651550 [TBL] [Abstract][Full Text] [Related]
7. Evolvability of Hsp70 expression under artificial election for inducible thermotolerance in independent populations of Drosophila melanogaster. Feder ME; Bedford TB; Albright DR; Michalak P Physiol Biochem Zool; 2002; 75(4):325-34. PubMed ID: 12324888 [TBL] [Abstract][Full Text] [Related]
8. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males. Folk DG; Zwollo P; Rand DM; Gilchrist GW J Exp Biol; 2006 Oct; 209(Pt 20):3964-73. PubMed ID: 17023590 [TBL] [Abstract][Full Text] [Related]
9. [Phototaxis and adaptation of the eyeless Drosophila melanogaster line]. Kirpichenko TV; Vorob'eva LI Tsitol Genet; 2001; 35(3):30-4. PubMed ID: 11785430 [TBL] [Abstract][Full Text] [Related]
10. Direct and correlated effects of selection on flight after exposure to thermal stress in Drosophila melanogaster. Krebs RA; Thompson KA Genetica; 2006; 128(1-3):217-25. PubMed ID: 17028952 [TBL] [Abstract][Full Text] [Related]
11. ADH enzyme activity and Adh gene expression in Drosophila melanogaster lines differentially selected for increased alcohol tolerance. Malherbe Y; Kamping A; van Delden W; van de Zande L J Evol Biol; 2005 Jul; 18(4):811-9. PubMed ID: 16033552 [TBL] [Abstract][Full Text] [Related]
12. Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster. Norry FM; Gomez FH; Loeschcke V Mol Ecol; 2007 Aug; 16(15):3274-84. PubMed ID: 17651203 [TBL] [Abstract][Full Text] [Related]
13. Multitrait evolution in lines of Drosophila melanogaster selected for increased starvation resistance: the role of metabolic rate and implications for the evolution of longevity. Baldal EA; Brakefield PM; Zwaan BJ Evolution; 2006 Jul; 60(7):1435-44. PubMed ID: 16929660 [TBL] [Abstract][Full Text] [Related]
14. High resolution mapping of candidate alleles for desiccation resistance in Drosophila melanogaster under selection. Telonis-Scott M; Gane M; DeGaris S; Sgrò CM; Hoffmann AA Mol Biol Evol; 2012 May; 29(5):1335-51. PubMed ID: 22130970 [TBL] [Abstract][Full Text] [Related]
15. The respiratory pattern in Drosophila melanogaster selected for desiccation resistance is not associated with the observed evolution of decreased locomotory activity. Williams AE; Rose MR; Bradley TJ Physiol Biochem Zool; 2004; 77(1):10-7. PubMed ID: 15057713 [TBL] [Abstract][Full Text] [Related]
16. Post-eclosion decline in 'knock-down' thermal resistance and reduced effect of heat hardening in Drosophila melanogaster. Pappas C; Hyde D; Bowler K; Loeschcke V; Sørensen JG Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):355-9. PubMed ID: 17208027 [TBL] [Abstract][Full Text] [Related]
17. Phenotypic plasticity and experimental evolution. Garland T; Kelly SA J Exp Biol; 2006 Jun; 209(Pt 12):2344-61. PubMed ID: 16731811 [TBL] [Abstract][Full Text] [Related]
18. Polygenic mutation in Drosophila melanogaster: genotype x environment interaction for spontaneous mutations affecting bristle number. Mackay TF; Lyman RF Genetica; 1998; 102-103(1-6):199-215. PubMed ID: 9720280 [TBL] [Abstract][Full Text] [Related]
19. Comparative biochemical and stress analysis of genetically selected Drosophila strains with different longevities. Force AG; Staples T; Soliman S; Arking R Dev Genet; 1995; 17(4):340-51. PubMed ID: 8641052 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature. Riehle MM; Bennett AF; Lenski RE; Long AD Physiol Genomics; 2003 Jun; 14(1):47-58. PubMed ID: 12672900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]