These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17584480)

  • 1. Experimental study on shear stress distributions in a centrifugal blood pump.
    Mizunuma H; Nakajima R
    Artif Organs; 2007 Jul; 31(7):550-9. PubMed ID: 17584480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical analysis of the inner flow field of a biocentrifugal blood pump.
    Chua LP; Song G; Lim TM; Zhou T
    Artif Organs; 2006 Jun; 30(6):467-77. PubMed ID: 16734599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of an axial blood pump.
    Chua LP; Su B; Lim TM; Zhou T
    Artif Organs; 2007 Jul; 31(7):560-70. PubMed ID: 17584481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of velocity and shear stress distributions in the impeller passages and the volute of a bio-centrifugal ventricular assist device.
    Chua LP; Ong KS; Song G
    Artif Organs; 2008 May; 32(5):376-87. PubMed ID: 18471167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of leakage flow in a shrouded centrifugal blood pump.
    Teo JB; Chan WK; Wong YW
    Artif Organs; 2010 Sep; 34(9):788-91. PubMed ID: 20883397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental study of Newtonian and non-Newtonian flow dynamics in an axial blood pump model.
    Hu QH; Li JY; Zhang MY; Zhu XR
    Artif Organs; 2012 Apr; 36(4):429-33. PubMed ID: 21995643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation on hydrodynamics and biocompatibility of a magnetically suspended axial blood pump.
    Zhu X; Zhang M; Zhang G; Liu H
    ASAIO J; 2006; 52(6):624-9. PubMed ID: 17117050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Investigation of computational fluid dynamics application in blood pumps].
    Wang F; Qian K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1033-6. PubMed ID: 17121348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).
    Kido K; Hoshi H; Watanabe N; Kataoka H; Ohuchi K; Asama J; Shinshi T; Yoshikawa M; Takatani S
    Artif Organs; 2006 May; 30(5):392-9. PubMed ID: 16683958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leakage flow rate and wall shear stress distributions in a biocentrifugal ventricular assist device.
    Chua LP; Ong KS; Yu CM; Zhou T
    ASAIO J; 2004; 50(6):530-6. PubMed ID: 15672784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The analysis, design, and testing of a blood lubricated hydrodynamic journal bearing.
    Walowit JA; Malanoski SB; Horvath D; Golding LR; Smith WA
    ASAIO J; 1997; 43(5):M556-9. PubMed ID: 9360105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow visualization in a centrifugal blood pump with an eccentric inlet port.
    Yamane T; Kodama T; Yamamoto Y; Shinohara T; Nosé Y
    Artif Organs; 2004 Jun; 28(6):564-70. PubMed ID: 15153149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic characteristics of a magnetically levitated impeller in a centrifugal blood pump.
    Asama J; Shinshi T; Hoshi H; Takatani S; Shimokohbe A
    Artif Organs; 2007 Apr; 31(4):301-11. PubMed ID: 17437499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow behavior within the 12-cc Penn State pulsatile pediatric ventricular assist device: an experimental study of the initial design.
    Manning KB; Wivholm BD; Yang N; Fontaine AA; Deutsch S
    Artif Organs; 2008 Jun; 32(6):442-52. PubMed ID: 18422800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pivot wash in two impeller modes for the Baylor/Miwatec centrifugal blood pump.
    Yamane T; Kodama T; Nishida M; Maruyama O; Yamamoto Y; Shinohara T; Motomura T; Nosé Y
    Artif Organs; 2006 Jan; 30(1):70-3. PubMed ID: 16409400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of several dentin desensitizers on shear bond strength of adhesive resin luting cement using self-etching primer.
    Huh JB; Kim JH; Chung MK; Lee HY; Choi YG; Shim JS
    J Dent; 2008 Dec; 36(12):1025-32. PubMed ID: 18986747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The most profitable use of flow visualization in the elimination of thrombus from a monopivot magnetic suspension blood pump.
    Yamane T; Maruyama O; Nishida M; Toyoda M; Tsutsui T; Jikuya T; Shigeta O; Sankai Y
    Artif Organs; 2004 Apr; 28(4):390-7. PubMed ID: 15084201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.