These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 17584484)

  • 21. Prediction of leakage flow in a shrouded centrifugal blood pump.
    Teo JB; Chan WK; Wong YW
    Artif Organs; 2010 Sep; 34(9):788-91. PubMed ID: 20883397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of radial clearance and rotor motion to hemolysis in a journal bearing of a centrifugal blood pump.
    Kataoka H; Kimura Y; Fujita H; Takatani S
    Artif Organs; 2006 Nov; 30(11):841-54. PubMed ID: 17062107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a small centrifugal blood pump with magnetic bearings.
    Jahanmir S; Hunsberger AZ; Ren Z; Heshmat H; Heshmat C; Tomaszewski MJ; Walton JF
    Artif Organs; 2009 Sep; 33(9):714-26. PubMed ID: 19775263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of the rotor motion and corresponding hemolysis of a centrifugal blood pump with a magnetic and hydrodynamic hybrid bearing.
    Kataoka H; Kimura Y; Fujita H; Takatani S
    Artif Organs; 2005 Jul; 29(7):547-56. PubMed ID: 15982283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational fluid dynamics and digital particle image velocimetry study of the flow through an optimized micro-axial blood pump.
    Triep M; Brücker C; Schröder W; Siess T
    Artif Organs; 2006 May; 30(5):384-91. PubMed ID: 16683957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.
    Watanabe N; Masuda T; Iida T; Kataoka H; Fujimoto T; Takatani S
    Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continued development of the Nimbus/University of Pittsburgh (UOP) axial flow left ventricular assist system.
    Thomas DC; Butler KC; Taylor LP; Le Blanc P; Griffith BP; Kormos RL; Borovetz HS; Litwak P; Kameneva MV; Choi S; Burgreen GW; Wagner WR; Wu Z; Antaki JF
    ASAIO J; 1997; 43(5):M564-6. PubMed ID: 9360107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of flow patterns in a ventricular assist device: a comparative study of particle image velocimetry and computational fluid dynamics.
    Sato K; Orihashi K; Kurosaki T; Tokumine A; Fukunaga S; Ninomiya S; Sueda T
    Artif Organs; 2009 Apr; 33(4):352-9. PubMed ID: 19335412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study between flow visualization and computational fluid dynamic analysis for the sun medical centrifugal blood pump.
    Yamane T; Miyamoto Y; Tajima K; Yamazaki K
    Artif Organs; 2004 May; 28(5):458-66. PubMed ID: 15113340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Research on flow characteristics in a non-blade centrifugal blood pump based on CFD technology].
    Cheng Y; Luo B; Wu W; Jiang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1133-7. PubMed ID: 21089685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Filament support spindle for an intravascular cavopulmonary assist device.
    Throckmorton AL; Kapadia JY; Wittenschlaeger TM; Medina TJ; Hoang HQ; Bhavsar SS
    Artif Organs; 2010 Nov; 34(11):1039-44. PubMed ID: 21092047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump.
    Arvand A; Hormes M; Reul H
    Artif Organs; 2005 Jul; 29(7):531-40. PubMed ID: 15982281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design optimization of blood shearing instrument by computational fluid dynamics.
    Wu J; Antaki JF; Snyder TA; Wagner WR; Borovetz HS; Paden BE
    Artif Organs; 2005 Jun; 29(6):482-9. PubMed ID: 15926986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A passive magnetically and hydrodynamically suspended rotary blood pump.
    Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H
    Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).
    Kido K; Hoshi H; Watanabe N; Kataoka H; Ohuchi K; Asama J; Shinshi T; Yoshikawa M; Takatani S
    Artif Organs; 2006 May; 30(5):392-9. PubMed ID: 16683958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the influence of volute design on journal bearing bias force using computational fluid dynamics.
    Graefe R; Timms D; Böhning F; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2010 Sep; 34(9):760-5. PubMed ID: 20883394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow study on a newly developed impeller for a left ventricular assist device.
    Hsu CH
    J Artif Organs; 2003; 6(2):92-100. PubMed ID: 14598109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices.
    Zhang T; Taskin ME; Fang HB; Pampori A; Jarvik R; Griffith BP; Wu ZJ
    Artif Organs; 2011 Dec; 35(12):1180-6. PubMed ID: 21810113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.