These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 17584484)

  • 41. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design and numerical evaluation of an axial partial-assist blood pump for Chinese and other heart failure patients.
    Liu GM; Jin DH; Zhou JY; Jiang XH; Sun HS; Zhang Y; Chen HB; Hu SS; Gui XM
    Int J Artif Organs; 2017 Sep; 40(9):489-497. PubMed ID: 28777391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluid dynamics aspects of miniaturized axial-flow blood pump.
    Kang C; Huang Q; Li Y
    Biomed Mater Eng; 2014; 24(1):723-9. PubMed ID: 24211957
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Design of an axial blood pump of diffuser with splitter blades and cantilevered main blades].
    Liu G; Xi J; Chen H; Zhang Y; Hou J; Zhou J; Sun H; Hu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):379-385. PubMed ID: 31232539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.
    Burgreen GW; Loree HM; Bourque K; Dague C; Poirier VL; Farrar D; Hampton E; Wu ZJ; Gempp TM; Schöb R
    Artif Organs; 2004 Oct; 28(10):874-80. PubMed ID: 15384992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support.
    Taskin ME; Fraser KH; Zhang T; Gellman B; Fleischli A; Dasse KA; Griffith BP; Wu ZJ
    Artif Organs; 2010 Dec; 34(12):1099-113. PubMed ID: 20626739
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluid dynamic characteristics of the VentrAssist rotary blood pump.
    Tansley G; Vidakovic S; Reizes J
    Artif Organs; 2000 Jun; 24(6):483-7. PubMed ID: 10886070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical cavopulmonary assist for the univentricular Fontan circulation using a novel folding propeller blood pump.
    Throckmorton AL; Ballman KK; Myers CD; Litwak KN; Frankel SH; Rodefeld MD
    ASAIO J; 2007; 53(6):734-41. PubMed ID: 18043158
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.
    Wu J; Paden BE; Borovetz HS; Antaki JF
    Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling and identification of an intra-aorta pump.
    Chang Y; Gao B
    ASAIO J; 2010; 56(6):504-9. PubMed ID: 21245795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
    Okamoto E; Hashimoto T; Mitamura Y
    J Artif Organs; 2003; 6(3):162-7. PubMed ID: 14598098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CFD analysis of a Mag-Lev ventricular assist device for infants and children: fourth generation design.
    Throckmorton AL; Untaroiu A
    ASAIO J; 2008; 54(4):423-31. PubMed ID: 18645362
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical and in vitro investigations of pressure rise in a new hydrodynamic blood bearing.
    Chan WK; Ooi KT; Loh YC
    Artif Organs; 2007 Jun; 31(6):434-40. PubMed ID: 17537055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.
    Zhang J; Koert A; Gellman B; Gempp TM; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    ASAIO J; 2007; 53(1):23-31. PubMed ID: 17237645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of a new PM motor design for a rotary dynamic blood Pump.
    Xu L; Wang F; Fu M; Medvedev A; Smith WA; Golding LA
    ASAIO J; 1997; 43(5):M559-64. PubMed ID: 9360106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inlet and outlet devices for rotary blood pumps.
    Song X; Wood HG; Allaire PE; Antaki JF; Olsen DB
    Artif Organs; 2004 Oct; 28(10):911-5. PubMed ID: 15384997
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of rotor impeller structure on performance improvement of suspended axial flow blood pumps.
    Wang L; Yun Z; Tang X; Xiang C
    Int J Artif Organs; 2024 Mar; 47(3):162-172. PubMed ID: 38450429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of the washout effect in a magnetically driven axial blood pump.
    Triep M; Brücker C; Kerkhoffs W; Schumacher O; Marseille O
    Artif Organs; 2008 Oct; 32(10):778-84. PubMed ID: 18959666
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurements by laser Doppler velocimetry in the casing/impeller clearance gap of a biocentrifugal ventricular assist device model.
    Chua LP; Ong KS; Song G; Ji W
    Artif Organs; 2009 Apr; 33(4):360-72. PubMed ID: 19335413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.