BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17584787)

  • 1. The structure of the CstF-77 homodimer provides insights into CstF assembly.
    Legrand P; Pinaud N; Minvielle-Sébastia L; Fribourg S
    Nucleic Acids Res; 2007; 35(13):4515-22. PubMed ID: 17584787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors.
    Bai Y; Auperin TC; Chou CY; Chang GG; Manley JL; Tong L
    Mol Cell; 2007 Mar; 25(6):863-75. PubMed ID: 17386263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locked tether formation by cooperative folding of Rna14p monkeytail and Rna15p hinge domains in the yeast CF IA complex.
    Moreno-Morcillo M; Minvielle-Sébastia L; Fribourg S; Mackereth CD
    Structure; 2011 Apr; 19(4):534-45. PubMed ID: 21481776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexameric architecture of CstF supported by CstF-50 homodimerization domain structure.
    Moreno-Morcillo M; Minvielle-Sébastia L; Mackereth C; Fribourg S
    RNA; 2011 Mar; 17(3):412-8. PubMed ID: 21233223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3'-end processing.
    Qu X; Perez-Canadillas JM; Agrawal S; De Baecke J; Cheng H; Varani G; Moore C
    J Biol Chem; 2007 Jan; 282(3):2101-15. PubMed ID: 17116658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly.
    Romier C; James N; Birck C; Cavarelli J; Vivarès C; Collart MA; Moras D
    J Mol Biol; 2007 May; 368(5):1292-306. PubMed ID: 17397863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of Arabidopsis homologues of the animal CstF complex that regulates 3' mRNA cleavage and polyadenylation.
    Yao Y; Song L; Katz Y; Galili G
    J Exp Bot; 2002 Nov; 53(378):2277-8. PubMed ID: 12379796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein.
    Takagaki Y; Manley JL
    Nature; 1994 Dec; 372(6505):471-4. PubMed ID: 7984242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyadenylation proteins CstF-64 and tauCstF-64 exhibit differential binding affinities for RNA polymers.
    Monarez RR; MacDonald CC; Dass B
    Biochem J; 2007 Feb; 401(3):651-8. PubMed ID: 17029590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of the CstF complex unveils a regulatory role for CstF-50 in recognition of 3'-end processing signals.
    Yang W; Hsu PL; Yang F; Song JE; Varani G
    Nucleic Acids Res; 2018 Jan; 46(2):493-503. PubMed ID: 29186539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical shift assignments of a minimal Rna14p/Rna15p heterodimer from the yeast cleavage factor IA complex.
    Mackereth CD
    Biomol NMR Assign; 2011 Apr; 5(1):93-5. PubMed ID: 20967574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation.
    Hockert JA; Yeh HJ; MacDonald CC
    J Biol Chem; 2010 Jan; 285(1):695-704. PubMed ID: 19887456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of CstF-64, CstF-77, and symplekin: implications on localisation and function.
    Ruepp MD; Schweingruber C; Kleinschmidt N; Schümperli D
    Mol Biol Cell; 2011 Jan; 22(1):91-104. PubMed ID: 21119002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Drosophila homologue of the 64 kDa subunit of cleavage stimulation factor interacts with the 77 kDa subunit encoded by the suppressor of forked gene.
    Hatton LS; Eloranta JJ; Figueiredo LM; Takagaki Y; Manley JL; O'Hare K
    Nucleic Acids Res; 2000 Jan; 28(2):520-6. PubMed ID: 10606651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50.
    Edwards RA; Lee MS; Tsutakawa SE; Williams RS; Nazeer I; Kleiman FE; Tainer JA; Glover JN
    Biochemistry; 2008 Nov; 47(44):11446-56. PubMed ID: 18842000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction between two Arabidopsis polyadenylation factor subunits involves an evolutionarily-conserved motif and has implications for the assembly and function of the polyadenylation complex.
    Addepalli B; Hunt AG
    Protein Pept Lett; 2008; 15(1):76-88. PubMed ID: 18221017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the Rna14-Rna15 complex.
    Paulson AR; Tong L
    RNA; 2012 Jun; 18(6):1154-62. PubMed ID: 22513198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex protein interactions within the human polyadenylation machinery identify a novel component.
    Takagaki Y; Manley JL
    Mol Cell Biol; 2000 Mar; 20(5):1515-25. PubMed ID: 10669729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of human cleavage factor I(m) hints at functions beyond UGUA-specific RNA binding: a role in alternative polyadenylation and a potential link to 5' capping and splicing.
    Yang Q; Gilmartin GM; Doublié S
    RNA Biol; 2011; 8(5):748-53. PubMed ID: 21881408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural basis of CstF-77 modulation of cleavage and polyadenylation through stimulation of CstF-64 activity.
    Grozdanov PN; Masoumzadeh E; Latham MP; MacDonald CC
    Nucleic Acids Res; 2018 Dec; 46(22):12022-12039. PubMed ID: 30257008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.