These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 17584843)

  • 1. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity.
    Newsholme P; Haber EP; Hirabara SM; Rebelato EL; Procopio J; Morgan D; Oliveira-Emilio HC; Carpinelli AR; Curi R
    J Physiol; 2007 Aug; 583(Pt 1):9-24. PubMed ID: 17584843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic β-cells: evidence for regulation by Rac1.
    Subasinghe W; Syed I; Kowluru A
    Am J Physiol Regul Integr Comp Physiol; 2011 Jan; 300(1):R12-20. PubMed ID: 20943855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes?
    Guichard C; Moreau R; Pessayre D; Epperson TK; Krause KH
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):920-9. PubMed ID: 18793162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell.
    Newsholme P; Morgan D; Rebelato E; Oliveira-Emilio HC; Procopio J; Curi R; Carpinelli A
    Diabetologia; 2009 Dec; 52(12):2489-98. PubMed ID: 19809798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase.
    Shen GX
    Can J Physiol Pharmacol; 2010 Mar; 88(3):241-8. PubMed ID: 20393589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells.
    Lee HB; Yu MR; Song JS; Ha H
    Kidney Int; 2004 Apr; 65(4):1170-9. PubMed ID: 15086456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced glycation end-products induce injury to pancreatic beta cells through oxidative stress.
    Lin N; Zhang H; Su Q
    Diabetes Metab; 2012 Jun; 38(3):250-7. PubMed ID: 22386833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells.
    Elumalai S; Karunakaran U; Lee IK; Moon JS; Won KC
    Redox Biol; 2017 Apr; 11():126-134. PubMed ID: 27912197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeutic approaches.
    Fridlyand LE; Philipson LH
    Ann N Y Acad Sci; 2005 Dec; 1066():136-51. PubMed ID: 16533924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucolipotoxicity-induced Oxidative Stress is Related to Mitochondrial Dysfunction and Apoptosis of Pancreatic β-cell.
    Vela-Guajardo JE; Garza-González S; García N
    Curr Diabetes Rev; 2021; 17(5):e031120187541. PubMed ID: 33143630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets.
    Graciano MF; Valle MM; Kowluru A; Curi R; Carpinelli AR
    Islets; 2011; 3(5):213-23. PubMed ID: 21750413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autocrine C-peptide mechanism underlying INS1 beta cell adaptation to oxidative stress.
    Luppi P; Drain P
    Diabetes Metab Res Rev; 2014 Oct; 30(7):599-609. PubMed ID: 24459093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus.
    Ma ZA; Zhao Z; Turk J
    Exp Diabetes Res; 2012; 2012():703538. PubMed ID: 22110477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive species and early manifestation of insulin resistance in type 2 diabetes.
    Fridlyand LE; Philipson LH
    Diabetes Obes Metab; 2006 Mar; 8(2):136-45. PubMed ID: 16448517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Panaxydol induces apoptosis through an increased intracellular calcium level, activation of JNK and p38 MAPK and NADPH oxidase-dependent generation of reactive oxygen species.
    Kim JY; Yu SJ; Oh HJ; Lee JY; Kim Y; Sohn J
    Apoptosis; 2011 Apr; 16(4):347-58. PubMed ID: 21190085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial hormesis in pancreatic β cells: does uncoupling protein 2 play a role?
    Li N; Stojanovski S; Maechler P
    Oxid Med Cell Longev; 2012; 2012():740849. PubMed ID: 23029600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase.
    Talior I; Tennenbaum T; Kuroki T; Eldar-Finkelman H
    Am J Physiol Endocrinol Metab; 2005 Feb; 288(2):E405-11. PubMed ID: 15507533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of NADPH oxidase 2 substantially restores glucose-induced dysfunction of pancreatic NIT-1 cells.
    Yuan H; Lu Y; Huang X; He Q; Man Y; Zhou Y; Wang S; Li J
    FEBS J; 2010 Dec; 277(24):5061-71. PubMed ID: 21073655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress.
    Li N; Frigerio F; Maechler P
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):930-4. PubMed ID: 18793163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.