These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17584892)

  • 41. Properties and fabrication of nanostructured 2Cr-Al₂O₃ composite for prosthetic bearing replacements.
    Park NR; Shon IJ
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():497-501. PubMed ID: 25491856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of sintering temperature on flexural properties of alumina fiber-reinforced, alumina-based ceramics prepared by tape casting technique.
    Tanimoto Y; Nemoto K
    J Prosthodont; 2006; 15(6):345-52. PubMed ID: 17096806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and characterization of Al-Zn/Al2O3 nano-powder composites.
    Durai TG; Das K; Das S
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1980-4. PubMed ID: 17654976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation.
    Parisi JR; Fernandes KR; Avanzi IR; Dorileo BP; Santana AF; Andrade AL; Gabbai-Armelin PR; Fortulan CA; Trichês ES; Granito RN; Renno ACM
    Mar Biotechnol (NY); 2019 Feb; 21(1):30-37. PubMed ID: 30218326
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication and Microstructure of ZnO/HA Composite with In Situ Formation of Second-Phase ZnO.
    Yuan S; Ma Y; Li X; Ma Z; Yang H; Mu L
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32906641
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Microwave sintering of nanometer powder of alumina and zirconia-based dental ceramics].
    Chen YF; Lu DM; Wan QB; Jin Y; Zhu JM
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2006 Feb; 24(1):73-6. PubMed ID: 16541664
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication and characterization of needle-like nano-HA and HA/MWNT composites.
    Meng YH; Tang CY; Tsui CP; Chen DZ
    J Mater Sci Mater Med; 2008 Jan; 19(1):75-81. PubMed ID: 17577639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites.
    Saha N; Dubey AK; Basu B
    J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):256-64. PubMed ID: 22102555
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on sintering process of synthetic hydroxyapatite.
    Malina D; Biernat K; Sobczak-Kupiec A
    Acta Biochim Pol; 2013; 60(4):851-5. PubMed ID: 24432345
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coating of hydroxyapatite on highly porous Al2O3 substrate for bone substitutes.
    Jiang G; Shi D
    J Biomed Mater Res; 1998; 43(1):77-81. PubMed ID: 9509347
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solubility of hydroxyapatite/mica composites.
    Nordström EG; Hara T; Herø H
    Biomed Mater Eng; 1996; 6(2):73-8. PubMed ID: 8761517
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites.
    Joseph R; McGregor WJ; Martyn MT; Tanner KE; Coates PD
    Biomaterials; 2002 Nov; 23(21):4295-302. PubMed ID: 12194532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of Al
    Konopka K; Krasnowski M; Zygmuntowicz J; Cymerman K; Wachowski M; Piotrkiewicz P
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34205248
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent.
    Peng W; Xu Z; Luo C; Zhao H
    Environ Sci Technol; 2015 Jul; 49(13):8237-45. PubMed ID: 26047026
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials.
    Jing L; Chen L; Peng H; Ji M; Xiong Y; Lv G
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2154-2170. PubMed ID: 28950766
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites.
    Tancred DC; McCormack BA; Carr AJ
    Biomaterials; 1998 Oct; 19(19):1735-43. PubMed ID: 9856584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO
    Kalantari E; Naghib SM; Iravani NJ; Esmaeili R; Naimi-Jamal MR; Mozafari M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():109912. PubMed ID: 31546348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The biocompatibility of novel starch-based polymers and composites: in vitro studies.
    Marques AP; Reis RL; Hunt JA
    Biomaterials; 2002 Mar; 23(6):1471-8. PubMed ID: 11829443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.