These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 17584968)
1. Cold exposure increases the biosynthesis and proteolytic processing of prothyrotropin-releasing hormone in the hypothalamic paraventricular nucleus via beta-adrenoreceptors. Perello M; Stuart RC; Vaslet CA; Nillni EA Endocrinology; 2007 Oct; 148(10):4952-64. PubMed ID: 17584968 [TBL] [Abstract][Full Text] [Related]
2. Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Perello M; Friedman T; Paez-Espinosa V; Shen X; Stuart RC; Nillni EA Endocrinology; 2006 Jun; 147(6):2705-16. PubMed ID: 16497799 [TBL] [Abstract][Full Text] [Related]
3. Central administration of cocaine- and amphetamine-regulated transcript increases phosphorylation of cAMP response element binding protein in corticotropin-releasing hormone-producing neurons but not in prothyrotropin-releasing hormone-producing neurons in the hypothalamic paraventricular nucleus. Sarkar S; Wittmann G; Fekete C; Lechan RM Brain Res; 2004 Mar; 999(2):181-92. PubMed ID: 14759497 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of proTRH-derived peptides in prohormone convertase 1 and 2 knockout mice. Cyr NE; Stuart RC; Zhu X; Steiner DF; Nillni EA Peptides; 2012 May; 35(1):42-8. PubMed ID: 22421509 [TBL] [Abstract][Full Text] [Related]
5. Cellular colocalization and coregulation between hypothalamic pro-TRH and prohormone convertases in hypothyroidism. Espinosa VP; Ferrini M; Shen X; Lutfy K; Nillni EA; Friedman TC Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E175-86. PubMed ID: 16926379 [TBL] [Abstract][Full Text] [Related]
6. Regulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone. Sanchez VC; Goldstein J; Stuart RC; Hovanesian V; Huo L; Munzberg H; Friedman TC; Bjorbaek C; Nillni EA J Clin Invest; 2004 Aug; 114(3):357-69. PubMed ID: 15286802 [TBL] [Abstract][Full Text] [Related]
7. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Légrádi G; Emerson CH; Ahima RS; Flier JS; Lechan RM Endocrinology; 1997 Jun; 138(6):2569-76. PubMed ID: 9165050 [TBL] [Abstract][Full Text] [Related]
8. Central administration of neuropeptide Y reduces alpha-melanocyte-stimulating hormone-induced cyclic adenosine 5'-monophosphate response element binding protein (CREB) phosphorylation in pro-thyrotropin-releasing hormone neurons and increases CREB phosphorylation in corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Sarkar S; Lechan RM Endocrinology; 2003 Jan; 144(1):281-91. PubMed ID: 12488356 [TBL] [Abstract][Full Text] [Related]
9. PreproTRH(178-199) and two novel peptides (pFQ7 and pSE14) derived from its processing, which are produced in the paraventricular nucleus of the rat hypothalamus, are regulated during suckling. Nillni EA; Aird F; Seidah NG; Todd RB; Koenig JI Endocrinology; 2001 Feb; 142(2):896-906. PubMed ID: 11159863 [TBL] [Abstract][Full Text] [Related]
10. Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH- and CRH-producing neurons of the hypothalamic paraventricular nucleus. Sarkar S; Légrádi G; Lechan RM Brain Res; 2002 Jul; 945(1):50-9. PubMed ID: 12113951 [TBL] [Abstract][Full Text] [Related]
11. The role of intracerebroventricular administration of leptin in the stimulation of prothyrotropin releasing hormone neurons in the hypothalamic paraventricular nucleus. Perello M; Stuart RC; Nillni EA Endocrinology; 2006 Jul; 147(7):3296-306. PubMed ID: 16627588 [TBL] [Abstract][Full Text] [Related]
12. The biosynthesis and processing of neuropeptides: lessons from prothyrotropin releasing hormone (proTRH). Perello M; Nillni EA Front Biosci; 2007 May; 12():3554-65. PubMed ID: 17485321 [TBL] [Abstract][Full Text] [Related]
13. Differential responses of thyrotropin-releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus. Sánchez E; Uribe RM; Corkidi G; Zoeller RT; Cisneros M; Zacarias M; Morales-Chapa C; Charli JL; Joseph-Bravo P Neuroendocrinology; 2001 Dec; 74(6):407-22. PubMed ID: 11752897 [TBL] [Abstract][Full Text] [Related]
14. Glutamatergic innervation of corticotropin-releasing hormone- and thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Wittmann G; Lechan RM; Liposits Z; Fekete C Brain Res; 2005 Mar; 1039(1-2):53-62. PubMed ID: 15781046 [TBL] [Abstract][Full Text] [Related]
15. Deletion of the Nhlh2 transcription factor decreases the levels of the anorexigenic peptides alpha melanocyte-stimulating hormone and thyrotropin-releasing hormone and implicates prohormone convertases I and II in obesity. Jing E; Nillni EA; Sanchez VC; Stuart RC; Good DJ Endocrinology; 2004 Apr; 145(4):1503-13. PubMed ID: 14701669 [TBL] [Abstract][Full Text] [Related]
16. Effect of precipitated morphine withdrawal on post-translational processing of prothyrotropin releasing hormone (proTRH) in the ventrolateral column of the midbrain periaqueductal gray. Nillni EA; Lee A; Legradi G; Lechan RM J Neurochem; 2002 Mar; 80(5):874-84. PubMed ID: 11948251 [TBL] [Abstract][Full Text] [Related]
17. Differential response of TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in female animals submitted to food-restriction or dehydration-induced anorexia and cold exposure. Jaimes-Hoy L; Joseph-Bravo P; de Gortari P Horm Behav; 2008 Feb; 53(2):366-77. PubMed ID: 18191132 [TBL] [Abstract][Full Text] [Related]
18. Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. Fekete C; Mihály E; Luo LG; Kelly J; Clausen JT; Mao Q; Rand WM; Moss LG; Kuhar M; Emerson CH; Jackson IM; Lechan RM J Neurosci; 2000 Dec; 20(24):9224-34. PubMed ID: 11125000 [TBL] [Abstract][Full Text] [Related]
19. Differential regulation of prohormone convertase 1/3, prohormone convertase 2 and phosphorylated cyclic-AMP-response element binding protein by short-term and long-term morphine treatment: implications for understanding the "switch" to opiate addiction. Espinosa VP; Liu Y; Ferrini M; Anghel A; Nie Y; Tripathi PV; Porche R; Jansen E; Stuart RC; Nillni EA; Lutfy K; Friedman TC Neuroscience; 2008 Oct; 156(3):788-99. PubMed ID: 18771713 [TBL] [Abstract][Full Text] [Related]