BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1758537)

  • 1. Increases in circulating level of platelet-activating factor lag behind transient neutropenia during hemodialysis with cuprophane membranes.
    Sakaguchi K; Morimoto S; Chen YH; Nakamoto Y; Ogihara T
    Nephron; 1991; 59(3):455-60. PubMed ID: 1758537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is platelet-activating factor produced during hemodialysis with AN-69 polyacrylonitrile membrane?
    Iatrou C; Afentakis N; Nomikos T; Dinas C; Stavropoulos-Giokas C; Antonopoulou S
    Nephron; 2002 May; 91(1):86-93. PubMed ID: 12021524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Granulocyte activation and adhesion molecules during hemodialysis with cuprophane and a high-flux biocompatible membrane.
    Combe C; Pourtein M; de Précigout V; Baquey A; Morel D; Potaux L; Vincendeau P; Bézian JH; Aparicio M
    Am J Kidney Dis; 1994 Sep; 24(3):437-42. PubMed ID: 8079969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation between complement activation, integrin expression and neutropenia during hemodialysis.
    Rousseau Y; Carreno MP; Poignet JL; Kazatchkine MD; Haeffner-Cavaillon N
    Biomaterials; 1999 Oct; 20(20):1959-67. PubMed ID: 10514074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The production of platelet-activating factor (PAF) during hemodialysis with cuprophane membrane. Does the calcium concentration in the dialysate play any role on it?
    Iatrou C; Afentakis N; Antonopoulou S; Andrikopoulos N; Demopoulos CA; Ziroyannis P
    Int J Artif Organs; 1995 Jul; 18(7):355-61. PubMed ID: 8655220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polycarbonate hemodialysis membrane: neutrophil, platelet, complement and chemiluminescence kinetics during first and second use.
    Heierli C; Markert M; Frei J; Lambert PH; Wauters JP
    Blood Purif; 1986; 4(1-3):82-7. PubMed ID: 3730165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of biocompatibility of hemophane, cellulose diacetate and acrilonitile membranes in hemodialysis].
    Germin Petrović D
    Acta Med Croatica; 2004; 58(1):31-6. PubMed ID: 15125391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient reactions and granulocyte degranulation during hemodialysis with cuprophane and polycarbonate membranes. A double-blind study.
    Danielson BG; Hällgren R; Venge P
    Blood Purif; 1986; 4(1-3):147-50. PubMed ID: 3524607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodialysis-associated platelet activation and thrombocytopenia.
    Hakim RM; Schafer AI
    Am J Med; 1985 Apr; 78(4):575-80. PubMed ID: 3885730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of PAF and leukotrienes in bioincompatibility of cuprophane membranes in hemodialysis.
    Kabasakal C; Mir S; Gousseinov A; Cura A; Betin N; Coker I
    Turk J Pediatr; 1998; 40(3):413-20. PubMed ID: 9763906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dialyzer geometry during hemodialysis with cuprophane membranes.
    Taylor JE; McLaren M; Mactier RA; Henderson IS; Stewart WK; Belch JJ
    Kidney Int; 1992 Aug; 42(2):442-7. PubMed ID: 1405328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Changes in leukocyte counts using a cellulose acetate membrane (FB-T) during hemodialysis. A comparison with a cuprophane membrane].
    Pak K; Kobira S; Tomoyoshi T; Nishimura N
    Hinyokika Kiyo; 1986 Sep; 32(9):1231-5. PubMed ID: 3812143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of hemodialysis membranes: interrelations between plasma complement and cytokine levels.
    Varela MP; Kimmel PL; Phillips TM; Mishkin GJ; Lew SQ; Bosch JP
    Blood Purif; 2001; 19(4):370-9. PubMed ID: 11574733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary salt, blood pressure and circulating levels of 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine in patients with essential hypertension.
    Masugi F; Sakaguchi K; Saeki S; Imaoka M; Ogihara T
    J Lipid Mediat; 1989; 1(6):341-8. PubMed ID: 2519902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucocyte occlusion of cuprophane membranes as a cause of reduced hemodialysis efficiency.
    Dodd NJ; Parsons V; Weston MJ
    Int J Artif Organs; 1982 Jul; 5(4):275-6. PubMed ID: 7118290
    [No Abstract]   [Full Text] [Related]  

  • 16. Endothelin and platelet activating factor. Possible indices for biocompatibility of hemodialysis.
    Akizawa T; Kinugasa E; Koshikawa S
    ASAIO Trans; 1991; 37(3):M384-5. PubMed ID: 1751199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutrophil reactive oxygen species production during hemodialysis: role of activated platelet adhesion to neutrophils through P-selectin.
    Bonomini M; Stuard S; Carreno MP; Settefrati N; Santarelli P; Haeffner-Cavaillon N; Albertazzi A
    Nephron; 1997; 75(4):402-11. PubMed ID: 9127326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platelet activation and platelet-erythrocyte aggregates in end-stage renal disease patients on hemodialysis.
    Sirolli V; Strizzi L; Di Stante S; Robuffo I; Procopio A; Bonomini M
    Thromb Haemost; 2001 Sep; 86(3):834-9. PubMed ID: 11583316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodialysis-associated neutropenia and hypoxemia: the effect of dialyzer membrane materials.
    Hakim RM; Lowrie EG
    Nephron; 1982; 32(1):32-9. PubMed ID: 6817150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of complement and platelet-activating factor in the stimulation of phagocytosis and reactive oxygen species production during haemodialysis.
    Gastaldello K; Husson C; Wens R; Vanherweghem JL; Tielemans C
    Nephrol Dial Transplant; 2000 Oct; 15(10):1638-46. PubMed ID: 11007834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.