These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17585785)

  • 1. Molecular details of ovalbumin-pectin complexes at the air/water interface: a spectroscopic study.
    Kudryashova EV; Visser AJ; van Hoek A; de Jongh HH
    Langmuir; 2007 Jul; 23(15):7942-50. PubMed ID: 17585785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the adsorption properties at air-water interfaces of complexes of egg white ovalbumin with pectin by the dielectric constant.
    Kudryashova EV; de Jongh HH
    J Colloid Interface Sci; 2008 Feb; 318(2):430-9. PubMed ID: 18054032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface.
    Kudryashova EV; Meinders MB; Visser AJ; van Hoek A; de Jongh HH
    Eur Biophys J; 2003 Sep; 32(6):553-62. PubMed ID: 12709747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of mixed beta-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study.
    Ganzevles RA; Fokkink R; van Vliet T; Cohen Stuart MA; de Jongh HH
    J Colloid Interface Sci; 2008 Jan; 317(1):137-47. PubMed ID: 17945249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysaccharide/Surfactant complexes at the air-water interface - effect of the charge density on interfacial and foaming behaviors.
    Ropers MH; Novales B; Boué F; Axelos MA
    Langmuir; 2008 Nov; 24(22):12849-57. PubMed ID: 18950205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the extent of protein intermolecular interactions at air-water interfaces using spectroscopic techniques.
    de Jongh HH; Wierenga PA
    Biopolymers; 2006 Jul; 82(4):384-9. PubMed ID: 16583438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of protein-pectin electrostatic interaction on the foam stability mechanism.
    Sadahira MS; Lopes FC; Rodrigues MI; Netto FM
    Carbohydr Polym; 2014 Mar; 103():55-61. PubMed ID: 24528700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of acidic O/W emulsions with pectin.
    Alba K; Sagis LMC; Kontogiorgos V
    Colloids Surf B Biointerfaces; 2016 Sep; 145():301-308. PubMed ID: 27209382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating surface rheology by electrostatic protein/polysaccharide interactions.
    Ganzevles RA; Zinoviadou K; van Vliet T; Cohen MA; de Jongh HH
    Langmuir; 2006 Nov; 22(24):10089-96. PubMed ID: 17107004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pectin-lipid assembly at the air-water interface: effect of the pectin charge distribution.
    Ropers MH; Meister A; Blume A; Ralet MC
    Biomacromolecules; 2008 Apr; 9(4):1306-12. PubMed ID: 18330992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient measurement and structure analysis of protein-polysaccharide multilayers at fluid interfaces.
    Bertsch P; Thoma A; Bergfreund J; Geue T; Fischer P
    Soft Matter; 2019 Aug; 15(31):6362-6368. PubMed ID: 31298681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex coacervation of pea albumin-pectin and ovalbumin-pectin assessed by isothermal titration calorimeter and turbidimetry.
    Pillai PK; Guldiken B; Nickerson MT
    J Sci Food Agric; 2021 Feb; 101(3):1209-1217. PubMed ID: 32789852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial behavior of N-nitrosodiethylamine/bovine serum albumin complexes at the air-water and the chloroform-water interfaces by axisymmetric drop tensiometry.
    Juárez J; Galaz JG; Machi L; Burboa M; Gutiérrez-Millán LE; Goycoolea FM; Valdez MA
    J Phys Chem B; 2007 Mar; 111(10):2727-35. PubMed ID: 17315914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted surface pressure.
    Kudryashova EV; Visser AJ; De Jongh HH
    Protein Sci; 2005 Feb; 14(2):483-93. PubMed ID: 15659378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial structure of sugar beet pectin studied by atomic force microscopy.
    Gromer A; Kirby AR; Gunning AP; Morris VJ
    Langmuir; 2009 Jul; 25(14):8012-8. PubMed ID: 19374388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.
    Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):50-7. PubMed ID: 20692133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic incompatibility and complex formation in pectin/caseinate mixtures.
    Rediguieri CF; de Freitas O; Lettinga MP; Tuinier R
    Biomacromolecules; 2007 Nov; 8(11):3345-54. PubMed ID: 17994786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of beta-lactoglobulin to pectins varying in their overall and local charge density.
    Sperber BL; Stuart MA; Schols HA; Voragen AG; Norde W
    Biomacromolecules; 2009 Dec; 10(12):3246-52. PubMed ID: 19904952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water Retention of Calcium-Containing Pectin Studied by Quartz Crystal Microbalance and Infrared Spectroscopy with a Humidity Control System.
    Yamakita E; Nakashima S
    J Agric Food Chem; 2018 Sep; 66(35):9344-9352. PubMed ID: 30111110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.