These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 17585998)
1. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R Chemosphere; 2007 Oct; 69(6):961-6. PubMed ID: 17585998 [TBL] [Abstract][Full Text] [Related]
2. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils. Juhasz AL; Weber J; Smith E; Naidu R; Rees M; Rofe A; Kuchel T; Sansom L Environ Sci Technol; 2009 Dec; 43(24):9487-94. PubMed ID: 20000545 [TBL] [Abstract][Full Text] [Related]
3. In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R Chemosphere; 2007 Aug; 69(1):69-78. PubMed ID: 17532365 [TBL] [Abstract][Full Text] [Related]
4. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
5. Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables. Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R Chemosphere; 2008 May; 71(10):1963-9. PubMed ID: 18262220 [TBL] [Abstract][Full Text] [Related]
6. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Smith E; Naidu R; Weber J; Juhasz AL Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability and bioaccessibility of arsenic in a soil amended with drinking-water treatment residuals. Nagar R; Sarkar D; Makris KC; Datta R; Sylvia VL Arch Environ Contam Toxicol; 2009 Nov; 57(4):755-66. PubMed ID: 19347240 [TBL] [Abstract][Full Text] [Related]
8. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Sarkar D; Makris KC; Parra-Noonan MT; Datta R Environ Int; 2007 Feb; 33(2):164-9. PubMed ID: 17034861 [TBL] [Abstract][Full Text] [Related]
9. Effect of soil ageing on in vivo arsenic bioavailability in two dissimilar soils. Juhasz AL; Smith E; Weber J; Naidu R; Rees M; Rofe A; Kuchel T; Sansom L Chemosphere; 2008 May; 71(11):2180-6. PubMed ID: 18267324 [TBL] [Abstract][Full Text] [Related]
10. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study. Datta R; Sarkar D; Sharma S; Sand K Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204 [TBL] [Abstract][Full Text] [Related]
11. Assessment of lead bioaccessibility in peri-urban contaminated soils. Smith E; Weber J; Naidu R; McLaren RG; Juhasz AL J Hazard Mater; 2011 Feb; 186(1):300-5. PubMed ID: 21115224 [TBL] [Abstract][Full Text] [Related]
12. In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. Bruce S; Noller B; Matanitobua V; Ng J J Toxicol Environ Health A; 2007 Oct; 70(19):1700-11. PubMed ID: 17763089 [TBL] [Abstract][Full Text] [Related]
13. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey. Roberts SM; Munson JW; Lowney YW; Ruby MV Toxicol Sci; 2007 Jan; 95(1):281-8. PubMed ID: 17005634 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of small arms range soils for metal contamination and lead bioavailability. Bannon DI; Drexler JW; Fent GM; Casteel SW; Hunter PJ; Brattin WJ; Major MA Environ Sci Technol; 2009 Dec; 43(24):9071-6. PubMed ID: 20000496 [TBL] [Abstract][Full Text] [Related]
15. Dermal absorption of arsenic from soils as measured in the rhesus monkey. Lowney YW; Wester RC; Schoof RA; Cushing CA; Edwards M; Ruby MV Toxicol Sci; 2007 Dec; 100(2):381-92. PubMed ID: 17872898 [TBL] [Abstract][Full Text] [Related]
16. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Warren GP; Alloway BJ; Lepp NW; Singh B; Bochereau FJ; Penny C Sci Total Environ; 2003 Jul; 311(1-3):19-33. PubMed ID: 12826380 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of two in vitro protocols for determination of mercury bioaccessibility: influence of mercury fractionation and soil properties. Welfringer B; Zagury GJ J Environ Qual; 2009; 38(6):2237-44. PubMed ID: 19875779 [TBL] [Abstract][Full Text] [Related]
18. Predicting arsenic relative bioavailability in contaminated soils using meta analysis and relative bioavailability-bioaccessibility regression models. Juhasz AL; Weber J; Smith E Environ Sci Technol; 2011 Dec; 45(24):10676-83. PubMed ID: 22059522 [TBL] [Abstract][Full Text] [Related]
19. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies. Juhasz AL; Weber J; Naidu R; Gancarz D; Rofe A; Todor D; Smith E Environ Sci Technol; 2010 Jul; 44(13):5240-7. PubMed ID: 20527788 [TBL] [Abstract][Full Text] [Related]
20. Inclusion of soil arsenic bioaccessibility in ecological risk assessment and comparison with biological effects. Saunders JR; Knopper LD; Koch I; Reimer KJ Sci Total Environ; 2011 Dec; 412-413():132-7. PubMed ID: 22078367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]