These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17586051)

  • 1. Photoconversion using confocal laser scanning microscopy: A new tool for the ultrastructural analysis of fluorescently labeled cellular elements.
    Tozer JT; Henderson SC; Sun D; Colello RJ
    J Neurosci Methods; 2007 Aug; 164(2):240-6. PubMed ID: 17586051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal laser scanning microscopic photoconversion: a new method to stabilize fluorescently labeled cellular elements for electron microscopic analysis.
    Colello RJ; Tozer J; Henderson SC
    Curr Protoc Neurosci; 2012; Chapter 2():Unit2.15. PubMed ID: 23042499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoconversion of diaminobenzidine with different fluorescent neuronal markers into a light and electron microscopic dense reaction product.
    Lübke J
    Microsc Res Tech; 1993 Jan; 24(1):2-14. PubMed ID: 7679591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron microscopic analysis of fluorescent neuronal labeling after photoconversion.
    Balercia G; Chen S; Bentivoglio M
    J Neurosci Methods; 1992; 45(1-2):87-98. PubMed ID: 1283435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of photoconversion technique for correlated confocal and ultrastructural studies in organotypic slice cultures.
    Nikonenko I; Boda B; Alberi S; Muller D
    Microsc Res Tech; 2005 Oct; 68(2):90-6. PubMed ID: 16228980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of coculture model of blood-brain barrier in vitro for nanoparticle's transcytosis and toxicity evaluation.
    Lu W; Tan YZ; Jiang XG
    Yao Xue Xue Bao; 2006 Apr; 41(4):296-304. PubMed ID: 16856472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural investigation of neurons identified and localized using the confocal scanning laser microscope.
    Deitch JS; Smith KL; Swann JW; Turner JN
    J Electron Microsc Tech; 1991 May; 18(1):82-90. PubMed ID: 2056354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confocal Microscopy of Fluorescently Labeled EHDV-Infected Cell Cultures.
    Wells J; Corla A; Hawes PC
    Methods Mol Biol; 2024; 2838():91-100. PubMed ID: 39126625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-field confocal optical spectroscopy (NCOS): subdiffraction optical resolution for biological systems.
    Haydon PG; Marchese-Ragona S; Basarsky TA; Szulczewski M; McCloskey M
    J Microsc; 1996 Jun; 182(Pt 3):208-16. PubMed ID: 8763172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated fluorescence and transmission electron microscopy.
    Agronskaia AV; Valentijn JA; van Driel LF; Schneijdenberg CT; Humbel BM; van Bergen en Henegouwen PM; Verkleij AJ; Koster AJ; Gerritsen HC
    J Struct Biol; 2008 Nov; 164(2):183-9. PubMed ID: 18664385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoconversion of purified fluorescent proteins and dual-probe optical highlighting in live cells.
    Kremers GJ; Piston D
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20613710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoconversion of CFP to study neuronal tissue with electron microscopy.
    Wittenmayer N
    Methods Mol Biol; 2014; 1148():77-87. PubMed ID: 24718796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative 3-D analysis of GFAP labeled astrocytes from fluorescence confocal images.
    Kulkarni PM; Barton E; Savelonas M; Padmanabhan R; Lu Y; Trett K; Shain W; Leasure JL; Roysam B
    J Neurosci Methods; 2015 May; 246():38-51. PubMed ID: 25745860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transected axons of adult hypothalamo-neurohypophysial neurons regenerate along tanycytic processes.
    Chauvet N; Parmentier ML; Alonso G
    J Neurosci Res; 1995 May; 41(1):129-44. PubMed ID: 7674374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of Aquaporin 4 in rodent spinal cord: relationship with astrocyte markers and chondroitin sulfate proteoglycans.
    Vitellaro-Zuccarello L; Mazzetti S; Bosisio P; Monti C; De Biasi S
    Glia; 2005 Aug; 51(2):148-59. PubMed ID: 15789430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensity calibration of a laser scanning confocal microscope based on concentrated dyes.
    Model MA; Blank JL
    Anal Quant Cytol Histol; 2006 Oct; 28(5):253-61. PubMed ID: 17067007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immuohistochemical markers for pituicyte.
    Wei XY; Zhao CH; Liu YY; Wang YZ; Ju G
    Neurosci Lett; 2009 Nov; 465(1):27-30. PubMed ID: 19559073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axially-confined in vivo single-cell labeling by primed conversion using blue and red lasers with conventional confocal microscopes.
    Taniguchi A; Kimura Y; Mori I; Nonaka S; Higashijima SI
    Dev Growth Differ; 2017 Dec; 59(9):741-748. PubMed ID: 29238969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoro-jade B stains quiescent and reactive astrocytes in the rodent spinal cord.
    Anderson KJ; Fugaccia I; Scheff SW
    J Neurotrauma; 2003 Nov; 20(11):1223-31. PubMed ID: 14651809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy.
    Dedov VN; Cox GC; Roufogalis BD
    Micron; 2001 Oct; 32(7):653-60. PubMed ID: 11334734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.