BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17586107)

  • 1. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.
    Franke O; Durst K; Maier V; Göken M; Birkholz T; Schneider H; Hennig F; Gelse K
    Acta Biomater; 2007 Nov; 3(6):873-81. PubMed ID: 17586107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-based resurfacing of large cartilage defects: long-term evaluation of grafts from autologous transgene-activated periosteal cells in a porcine model of osteoarthritis.
    Gelse K; Mühle C; Franke O; Park J; Jehle M; Durst K; Göken M; Hennig F; von der Mark K; Schneider H
    Arthritis Rheum; 2008 Feb; 58(2):475-88. PubMed ID: 18240212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing.
    Schlichting K; Schell H; Kleemann RU; Schill A; Weiler A; Duda GN; Epari DR
    Am J Sports Med; 2008 Dec; 36(12):2379-91. PubMed ID: 18952905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage.
    Gratz KR; Wong VW; Chen AC; Fortier LA; Nixon AJ; Sah RL
    J Biomech; 2006; 39(1):138-46. PubMed ID: 16271598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene.
    Guo X; Zheng Q; Yang S; Shao Z; Yuan Q; Pan Z; Tang S; Liu K; Quan D
    Biomed Mater; 2006 Dec; 1(4):206-15. PubMed ID: 18458408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair and regeneration of osteochondral defects in the articular joints.
    Swieszkowski W; Tuan BH; Kurzydlowski KJ; Hutmacher DW
    Biomol Eng; 2007 Nov; 24(5):489-95. PubMed ID: 17931965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair.
    Kelly DJ; Prendergast PJ
    Tissue Eng; 2006 Sep; 12(9):2509-19. PubMed ID: 16995784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical behavior of intact and low-grade degenerated cartilage.
    Spahn G; Kahl E; Klinger HM; Mückley T; Günther M; Hofmann GO
    Biomed Tech (Berl); 2007 Apr; 52(2):216-22. PubMed ID: 17408382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplantation of de novo scaffold-free cartilage implants into sheep knee chondral defects.
    Jubel A; Andermahr J; Schiffer G; Fischer J; Rehm KE; Stoddart MJ; Häuselmann HJ
    Am J Sports Med; 2008 Aug; 36(8):1555-64. PubMed ID: 18658022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the influence of mechanical conditions in osteochondral defect healing.
    Duda GN; Maldonado ZM; Klein P; Heller MO; Burns J; Bail H
    J Biomech; 2005 Apr; 38(4):843-51. PubMed ID: 15713306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions.
    Strauss E; Schachter A; Frenkel S; Rosen J
    Am J Sports Med; 2009 Apr; 37(4):720-6. PubMed ID: 19204370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects.
    Gotterbarm T; Breusch SJ; Schneider U; Jung M
    Lab Anim; 2008 Jan; 42(1):71-82. PubMed ID: 18348768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of healthy human and swine articular cartilage dynamic indentation mechanics.
    Ronken S; Arnold MP; Ardura García H; Jeger A; Daniels AU; Wirz D
    Biomech Model Mechanobiol; 2012 May; 11(5):631-9. PubMed ID: 21769620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterization of native and tissue-engineered cartilage.
    Chen AC; Klisch SM; Bae WC; Temple MM; McGowan KB; Gratz KR; Schumacher BL; Sah RL
    Methods Mol Med; 2004; 101():157-90. PubMed ID: 15299215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro reversal of the load-bearing properties of lipid-depleted articular cartilage following exposure to phospholipid surfactant solutions.
    Oloyede A; Gudimetla P; Chen Y; Crawford R
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1200-8. PubMed ID: 18664404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paracrine effect of transplanted rib chondrocyte spheroids supports formation of secondary cartilage repair tissue.
    Gelse K; Brem M; Klinger P; Hess A; Swoboda B; Hennig F; Olk A
    J Orthop Res; 2009 Sep; 27(9):1216-25. PubMed ID: 19274742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Immunological investigation of repair of articular cartilage defects with allogeneic chondrocytes in porcins].
    Cai W; Tang T; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Nov; 21(11):1250-3. PubMed ID: 18069487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P188 reduces cell death and IGF-I reduces GAG release following single-impact loading of articular cartilage.
    Natoli RM; Athanasiou KA
    J Biomech Eng; 2008 Aug; 130(4):041012. PubMed ID: 18601454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.