These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 17586608)
1. Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation. Oikawa A; Rahman A; Yamashita T; Taira H; Kidou S J Exp Bot; 2007; 58(10):2617-25. PubMed ID: 17586608 [TBL] [Abstract][Full Text] [Related]
2. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Bruun-Rasmussen M; Madsen CT; Jessing S; Albrechtsen M Mol Plant Microbe Interact; 2007 Nov; 20(11):1323-31. PubMed ID: 17977144 [TBL] [Abstract][Full Text] [Related]
3. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Scofield SR; Huang L; Brandt AS; Gill BS Plant Physiol; 2005 Aug; 138(4):2165-73. PubMed ID: 16024691 [TBL] [Abstract][Full Text] [Related]
4. Genomic diversity of germinating scutellum specific gene P23k in barley and wheat. Kouzaki H; Kidou S; Miura H; Kato K Genetica; 2009 Nov; 137(2):233-42. PubMed ID: 19641998 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves. Ay N; Clauss K; Barth O; Humbeck K Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():121-35. PubMed ID: 18721317 [TBL] [Abstract][Full Text] [Related]
6. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure. Burton RA; Collins HM; Kibble NA; Smith JA; Shirley NJ; Jobling SA; Henderson M; Singh RR; Pettolino F; Wilson SM; Bird AR; Topping DL; Bacic A; Fincher GB Plant Biotechnol J; 2011 Feb; 9(2):117-35. PubMed ID: 20497371 [TBL] [Abstract][Full Text] [Related]
7. Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions. Hu P; Meng Y; Wise RP Mol Plant Microbe Interact; 2009 Mar; 22(3):311-20. PubMed ID: 19245325 [TBL] [Abstract][Full Text] [Related]
8. Tubulin gene expression during growth and maturation of leaves with different developmental patterns. Hellmann A; Meyer CU; Wernicke W Cell Motil Cytoskeleton; 1995; 30(1):67-72. PubMed ID: 7728869 [TBL] [Abstract][Full Text] [Related]
9. Virus-Induced Gene Silencing (VIGS) for Functional Characterization of Disease Resistance Genes in Barley Seedlings. Gunupuru LR; Perochon A; Ali SS; Scofield SR; Doohan FM Methods Mol Biol; 2019; 1900():95-114. PubMed ID: 30460561 [TBL] [Abstract][Full Text] [Related]
10. HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues. Wei W; Alexandersson E; Golldack D; Miller AJ; Kjellbom PO; Fricke W Plant Cell Physiol; 2007 Aug; 48(8):1132-47. PubMed ID: 17602190 [TBL] [Abstract][Full Text] [Related]
11. Induction of (1-->3,1-->4)-beta-D-glucan hydrolases in leaves of dark-incubated barley seedlings. Roulin S; Buchala AJ; Fincher GB Planta; 2002 May; 215(1):51-9. PubMed ID: 12012241 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Ding XS; Schneider WL; Chaluvadi SR; Mian MA; Nelson RS Mol Plant Microbe Interact; 2006 Nov; 19(11):1229-39. PubMed ID: 17073305 [TBL] [Abstract][Full Text] [Related]
13. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Farrokhi N; Burton RA; Brownfield L; Hrmova M; Wilson SM; Bacic A; Fincher GB Plant Biotechnol J; 2006 Mar; 4(2):145-67. PubMed ID: 17177793 [TBL] [Abstract][Full Text] [Related]
14. The gene encoding the cytosolic small subunit of ADP-glucose pyrophosphorylase in barley endosperm also encodes the major plastidial small subunit in the leaves. Rösti S; Rudi H; Rudi K; Opsahl-Sorteberg HG; Fahy B; Denyer K J Exp Bot; 2006; 57(14):3619-26. PubMed ID: 16957017 [TBL] [Abstract][Full Text] [Related]
15. Virus-Induced Gene Silencing for Gene Function Studies in Barley. Barciszewska-Pacak M; Jarmołowski A; Pacak A Methods Mol Biol; 2016; 1398():293-308. PubMed ID: 26867631 [TBL] [Abstract][Full Text] [Related]
16. Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. Bellin D; Schulz B; Soerensen TR; Salamini F; Schneider K J Exp Bot; 2007; 58(3):699-715. PubMed ID: 17307746 [TBL] [Abstract][Full Text] [Related]
17. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos. Zhang Q; Zhang X; Pettolino F; Zhou G; Li C J Plant Physiol; 2016 Feb; 191():127-39. PubMed ID: 26788957 [TBL] [Abstract][Full Text] [Related]
18. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183 [TBL] [Abstract][Full Text] [Related]
19. Stronger induction of callose deposition in barley by Russian wheat aphid than bird cherry-oat aphid is not associated with differences in callose synthase or beta-1,3-glucanase transcript abundance. Saheed SA; Cierlik I; Larsson KA; Delp G; Bradley G; Jonsson LM; Botha CE Physiol Plant; 2009 Feb; 135(2):150-61. PubMed ID: 19055542 [TBL] [Abstract][Full Text] [Related]
20. Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase. Schildhauer J; Wiedemuth K; Humbeck K Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():76-84. PubMed ID: 18721313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]