These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17586612)

  • 1. Vasodilator coordination via membrane conduction.
    Hermsmeyer RK; Thompson TL
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1320-1. PubMed ID: 17586612
    [No Abstract]   [Full Text] [Related]  

  • 2. Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone?
    Figueroa XF; Chen CC; Campbell KP; Damon DN; Day KH; Ramos S; Duling BR
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1371-83. PubMed ID: 17513486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage sensor movements.
    Bezanilla F
    J Gen Physiol; 2002 Oct; 120(4):465-73. PubMed ID: 12356849
    [No Abstract]   [Full Text] [Related]  

  • 4. Contributory role of endothelium and voltage-gated potassium channels in apocynin-induced vasorelaxations.
    Han WQ; Wong WT; Tian XY; Huang Y; Wu LY; Zhu DL; Gao PJ
    J Hypertens; 2010 Oct; 28(10):2102-10. PubMed ID: 20706137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Letter to the editor: "Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone?".
    Welsh DG; Tran CH; Plane F; Sandow S
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H2007; author reply H2008. PubMed ID: 17804398
    [No Abstract]   [Full Text] [Related]  

  • 6. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice.
    Sofronova SI; Tarasova OS; Gaynullina D; Borzykh AA; Behnke BJ; Stabley JN; McCullough DJ; Maraj JJ; Hanna M; Muller-Delp JM; Vinogradova OL; Delp MD
    J Appl Physiol (1985); 2015 Apr; 118(7):830-8. PubMed ID: 25593287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Channelopathy update].
    Kobayashi T
    No To Shinkei; 2005 Jan; 57(1):5-13. PubMed ID: 15782594
    [No Abstract]   [Full Text] [Related]  

  • 8. Vasorelaxing action of rutaecarpine: effects of rutaecarpine on calcium channel activities in vascular endothelial and smooth muscle cells.
    Wang GJ; Wu XC; Chen CF; Lin LC; Huang YT; Shan J; Pang PK
    J Pharmacol Exp Ther; 1999 Jun; 289(3):1237-44. PubMed ID: 10336511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patch-clamp study of developmental changes in voltage-dependent ion channels of mouse skeletal muscle fibers.
    Gonoi T
    Ann N Y Acad Sci; 1993 Dec; 707():352-5. PubMed ID: 9137566
    [No Abstract]   [Full Text] [Related]  

  • 10. Voltage-gated cation channel modulators for the treatment of stroke.
    Gribkoff VK; Winquist RJ
    Expert Opin Investig Drugs; 2005 May; 14(5):579-92. PubMed ID: 15926865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The surface charge theory and influences of sialic acid on the gating of sodium and potassium channels].
    Zhang XL; Xie YK
    Sheng Li Ke Xue Jin Zhan; 2004 Apr; 35(2):167-9. PubMed ID: 15285428
    [No Abstract]   [Full Text] [Related]  

  • 12. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons.
    Birinyi-Strachan LC; Gunning SJ; Lewis RJ; Nicholson GM
    Toxicol Appl Pharmacol; 2005 Apr; 204(2):175-86. PubMed ID: 15808523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical activity and calcium influx regulate ion channel development in embryonic Xenopus skeletal muscle.
    Linsdell P; Moody WJ
    J Neurosci; 1995 Jun; 15(6):4507-14. PubMed ID: 7790920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity.
    Ishizaka H; Kuo L
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H104-12. PubMed ID: 9249480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of hyperpolarization based on the directional conduction of action potential using a model nerve cell system.
    Kaji M; Kitazumi Y; Kano K; Shirai O
    Bioelectrochemistry; 2019 Aug; 128():155-164. PubMed ID: 31003054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and implications of potassium channel alterations.
    Korovkina VP; England SK
    Vascul Pharmacol; 2002 Jan; 38(1):3-12. PubMed ID: 12378820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials.
    Widmer H; Amerdeil H; Fontanaud P; Desarménien MG
    J Neurophysiol; 1997 Jan; 77(1):260-71. PubMed ID: 9120568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular mechanisms underlying cutaneous pressure-induced vasodilation: in vivo involvement of potassium channels.
    Garry A; Sigaudo-Roussel D; Merzeau S; Dumont O; Saumet JL; Fromy B
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H174-80. PubMed ID: 15734881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol and ion channels.
    Levitan I; Fang Y; Rosenhouse-Dantsker A; Romanenko V
    Subcell Biochem; 2010; 51():509-49. PubMed ID: 20213557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface dynamics of voltage-gated ion channels.
    Heine M; Ciuraszkiewicz A; Voigt A; Heck J; Bikbaev A
    Channels (Austin); 2016 Jul; 10(4):267-81. PubMed ID: 26891382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.