BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 17586644)

  • 21. The impact of LuxF on light intensity in bacterial bioluminescence.
    Brodl E; Csamay A; Horn C; Niederhauser J; Weber H; Macheroux P
    J Photochem Photobiol B; 2020 Jun; 207():111881. PubMed ID: 32325406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental and microbiological analysis of the inception of bioluminescent symbiosis in the marine fish Nuchequula nuchalis (Perciformes: Leiognathidae).
    Dunlap PV; Davis KM; Tomiyama S; Fujino M; Fukui A
    Appl Environ Microbiol; 2008 Dec; 74(24):7471-81. PubMed ID: 18978090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural replacement of vertically inherited lux-rib genes of Photobacterium aquimaris by horizontally acquired homologues.
    Urbanczyk H; Furukawa T; Yamamoto Y; Dunlap PV
    Environ Microbiol Rep; 2012 Aug; 4(4):412-6. PubMed ID: 23760826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.
    Lin JW; Lu HC; Chen HY; Weng SF
    Biochem Biophys Res Commun; 1997 Oct; 239(1):228-34. PubMed ID: 9345300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence of the luxD gene encoding acyltransferase of the lux operon from Photobacterium leiognathi.
    Chao YF; Weng SF; Lin JW
    Gene; 1993 Apr; 126(1):155-6. PubMed ID: 8472957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coregulation of lux genes and riboflavin genes in bioluminescent bacteria of Photobacterium phosphoreum.
    Sung ND; Lee CY
    J Microbiol; 2004 Sep; 42(3):194-9. PubMed ID: 15459647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleotide sequence of the luxC gene encoding fatty acid reductase of the lux operon from Photobacterium leiognathi.
    Lin JW; Chao YF; Weng SF
    Biochem Biophys Res Commun; 1993 Feb; 191(1):314-8. PubMed ID: 8447834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative genomics of symbiotic
    Gould AL; Henderson JB
    Microb Genom; 2023 Dec; 9(12):. PubMed ID: 38112751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of the lux genes from Photobacterium leiognathi and expression in Escherichia coli.
    Delong EF; Steinhauer D; Israel A; Nealson KH
    Gene; 1987; 54(2-3):203-10. PubMed ID: 3308637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Quantitative criteria for the estimation of the effectiveness of bioluminescence expression in natural and transgenic luminescent bacteria].
    Gusev AA; Kargatova TV; Medvedeva SE; Popova LIu
    Biofizika; 2008; 53(5):836-41. PubMed ID: 18954013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral transfer of the lux gene cluster.
    Kasai S; Okada K; Hoshino A; Iida T; Honda T
    J Biochem; 2007 Feb; 141(2):231-7. PubMed ID: 17169972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LuxA gene of light organ symbionts of the bioluminescent fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely related to that of Photobacterium leiognathi ssp. mandapamensis.
    Wada M; Kamiya A; Uchiyama N; Yoshizawa S; Kita-Tsukamoto K; Ikejima K; Yu R; Imada C; Karatani H; Mizuno N; Suzuki Y; Nishida M; Kogure K
    FEMS Microbiol Lett; 2006 Jul; 260(2):186-92. PubMed ID: 16842343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The presence of the internalin gene in natural atypically hemolytic Listeria innocua strains suggests descent from L. monocytogenes.
    Volokhov DV; Duperrier S; Neverov AA; George J; Buchrieser C; Hitchins AD
    Appl Environ Microbiol; 2007 Mar; 73(6):1928-39. PubMed ID: 17220266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Historical microbiology: revival and phylogenetic analysis of the luminous bacterial cultures of M. W. Beijerinck.
    Figge MJ; Robertson LA; Ast JC; Dunlap PV
    FEMS Microbiol Ecol; 2011 Dec; 78(3):463-72. PubMed ID: 22066815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of marine luminous bacteria from shallow coastal waters of Taiwan.
    Chiu HH; Chou HH; Jean WD; Shieh WY
    J Microbiol Immunol Infect; 2007 Feb; 40(1):14-23. PubMed ID: 17332902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics analysis of the luzA gene encoding chaperone from Photobacterium leiognathi related to bioluminescence.
    Lin JW; Lin BJ; Chen HY; Weng SF
    Biochem Biophys Res Commun; 1998 Mar; 244(3):838-42. PubMed ID: 9535753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic and phylogenetic characterization of luminous bacteria symbiotic with the deep-sea fish Chlorophthalmus albatrossis (Aulopiformes: Chlorophthalmidae).
    Dunlap PV; Ast JC
    Appl Environ Microbiol; 2005 Feb; 71(2):930-9. PubMed ID: 15691950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes.
    Haygood MG
    Arch Microbiol; 1990; 154(5):496-503. PubMed ID: 2256783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogeny, genomics, and symbiosis of Photobacterium.
    Urbanczyk H; Ast JC; Dunlap PV
    FEMS Microbiol Rev; 2011 Mar; 35(2):324-42. PubMed ID: 20883503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Heterogeneity of the populations of marine luminescent bacteria Photobacterium leiognathi under different conditions of cultivation].
    Medvedeva SE; Mogil'naia OA; Popova LIu
    Mikrobiologiia; 2006; 75(3):349-57. PubMed ID: 16871801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.