These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 17586778)
1. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding. Jäger M; Nguyen H; Dendle M; Gruebele M; Kelly JW Protein Sci; 2007 Jul; 16(7):1495-501. PubMed ID: 17586778 [TBL] [Abstract][Full Text] [Related]
2. A cross-strand Trp Trp pair stabilizes the hPin1 WW domain at the expense of function. Jäger M; Dendle M; Fuller AA; Kelly JW Protein Sci; 2007 Oct; 16(10):2306-13. PubMed ID: 17766376 [TBL] [Abstract][Full Text] [Related]
3. Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana. Landrieu I; Wieruszeski JM; Wintjens R; Inzé D; Lippens G J Mol Biol; 2002 Jul; 320(2):321-32. PubMed ID: 12079389 [TBL] [Abstract][Full Text] [Related]
4. Sequence determinants of thermodynamic stability in a WW domain--an all-beta-sheet protein. Jäger M; Dendle M; Kelly JW Protein Sci; 2009 Aug; 18(8):1806-13. PubMed ID: 19565466 [TBL] [Abstract][Full Text] [Related]
5. Solution structure of the human parvulin-like peptidyl prolyl cis/trans isomerase, hPar14. Terada T; Shirouzu M; Fukumori Y; Fujimori F; Ito Y; Kigawa T; Yokoyama S; Uchida T J Mol Biol; 2001 Jan; 305(4):917-26. PubMed ID: 11162102 [TBL] [Abstract][Full Text] [Related]
6. Engineering a beta-sheet protein toward the folding speed limit. Nguyen H; Jäger M; Kelly JW; Gruebele M J Phys Chem B; 2005 Aug; 109(32):15182-6. PubMed ID: 16852923 [TBL] [Abstract][Full Text] [Related]
7. NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein. Sekerina E; Rahfeld JU; Müller J; Fanghänel J; Rascher C; Fischer G; Bayer P J Mol Biol; 2000 Aug; 301(4):1003-17. PubMed ID: 10966801 [TBL] [Abstract][Full Text] [Related]
8. High-Resolution Mapping of the Folding Transition State of a WW Domain. Dave K; Jäger M; Nguyen H; Kelly JW; Gruebele M J Mol Biol; 2016 Apr; 428(8):1617-36. PubMed ID: 26880334 [TBL] [Abstract][Full Text] [Related]
9. Structural analysis of the mitotic regulator hPin1 in solution: insights into domain architecture and substrate binding. Bayer E; Goettsch S; Mueller JW; Griewel B; Guiberman E; Mayr LM; Bayer P J Biol Chem; 2003 Jul; 278(28):26183-93. PubMed ID: 12721297 [TBL] [Abstract][Full Text] [Related]
10. Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering. Tang HC; Lin YJ; Horng JC Proteins; 2014 Jan; 82(1):67-76. PubMed ID: 23839950 [TBL] [Abstract][Full Text] [Related]
11. Structure-function-folding relationship in a WW domain. Jäger M; Zhang Y; Bieschke J; Nguyen H; Dendle M; Bowman ME; Noel JP; Gruebele M; Kelly JW Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10648-53. PubMed ID: 16807295 [TBL] [Abstract][Full Text] [Related]
12. Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model. Luo Z; Ding J; Zhou Y Biophys J; 2007 Sep; 93(6):2152-61. PubMed ID: 17513360 [TBL] [Abstract][Full Text] [Related]
13. NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1. Kowalski JA; Liu K; Kelly JW Biopolymers; 2002 Feb; 63(2):111-21. PubMed ID: 11786999 [TBL] [Abstract][Full Text] [Related]
14. Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1. Ng CA; Kato Y; Tanokura M; Brownlee RT Biochim Biophys Acta; 2008 Sep; 1784(9):1208-14. PubMed ID: 18503784 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for phosphoserine-proline recognition by group IV WW domains. Verdecia MA; Bowman ME; Lu KP; Hunter T; Noel JP Nat Struct Biol; 2000 Aug; 7(8):639-43. PubMed ID: 10932246 [TBL] [Abstract][Full Text] [Related]
16. The dual histidine motif in the active site of Pin1 has a structural rather than catalytic role. Bailey ML; Shilton BH; Brandl CJ; Litchfield DW Biochemistry; 2008 Nov; 47(44):11481-9. PubMed ID: 18844375 [TBL] [Abstract][Full Text] [Related]
17. The effect of backbone cyclization on the thermodynamics of beta-sheet unfolding: stability optimization of the PIN WW domain. Deechongkit S; Kelly JW J Am Chem Soc; 2002 May; 124(18):4980-6. PubMed ID: 11982361 [TBL] [Abstract][Full Text] [Related]
18. Analysis of PIN1 WW domain through a simple statistical mechanics model. Bruscolini P; Cecconi F Biophys Chem; 2005 Apr; 115(2-3):153-8. PubMed ID: 15752598 [TBL] [Abstract][Full Text] [Related]
19. Determinants of ligand specificity in groups I and IV WW domains as studied by surface plasmon resonance and model building. Kato Y; Ito M; Kawai K; Nagata K; Tanokura M J Biol Chem; 2002 Mar; 277(12):10173-7. PubMed ID: 11751914 [TBL] [Abstract][Full Text] [Related]
20. Context-dependent contributions of backbone hydrogen bonding to beta-sheet folding energetics. Deechongkit S; Nguyen H; Powers ET; Dawson PE; Gruebele M; Kelly JW Nature; 2004 Jul; 430(6995):101-5. PubMed ID: 15229605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]