These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17586817)

  • 1. A 96-well DNase I footprinting screen for drug-DNA interactions.
    Ellis T; Evans DA; Martin CR; Hartley JA
    Nucleic Acids Res; 2007; 35(12):e89. PubMed ID: 17586817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel C8-linked pyrrolobenzodiazepine (PBD)-heterocycle conjugates that recognize DNA sequences containing an inverted CCAAT box.
    Brucoli F; Hawkins RM; James CH; Wells G; Jenkins TC; Ellis T; Hartley JA; Howard PW; Thurston DE
    Bioorg Med Chem Lett; 2011 Jun; 21(12):3780-3. PubMed ID: 21570842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the inverted CCAAT box 2 in the topoisomerase IIalpha promoter by JH-37, an imidazole-pyrrole polyamide hairpin: design, synthesis, molecular biology, and biophysical studies.
    Henry JA; Le NM; Nguyen B; Howard CM; Bailey SL; Horick SM; Buchmueller KL; Kotecha M; Hochhauser D; Hartley JA; Wilson WD; Lee M
    Biochemistry; 2004 Sep; 43(38):12249-57. PubMed ID: 15379563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands.
    Hampshire AJ; Rusling DA; Broughton-Head VJ; Fox KR
    Methods; 2007 Jun; 42(2):128-40. PubMed ID: 17472895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional analysis of the control region of the human DNA topoisomerase II alpha gene in drug-resistant cells.
    Takano H; Ise T; Nomoto M; Kato K; Murakami T; Ohmori H; Imamura T; Nagatani G; Okamoto T; Ohta R; Furukawa M; Shibao K; Izumi H; Kuwano M; Kohno K
    Anticancer Drug Des; 1999 Apr; 14(2):87-92. PubMed ID: 10405635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a comparative in vivo DNase I footprinting technique to analyze changes in protein-DNA interactions following phthalate exposure.
    Kuhl AJ; Ross SM; Gaido KW
    J Biochem Mol Toxicol; 2007; 21(5):312-22. PubMed ID: 17912698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNase I footprinting.
    Leblanc B; Moss T
    Methods Mol Biol; 2001; 148():31-8. PubMed ID: 11357594
    [No Abstract]   [Full Text] [Related]  

  • 8. In Vitro DNase I Footprinting.
    Leblanc BP; Moss T
    Methods Mol Biol; 2015; 1334():17-27. PubMed ID: 26404141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNase I footprinting.
    Leblanc B; Moss T
    Methods Mol Biol; 2009; 543():37-47. PubMed ID: 19378157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonradiochemical DNase I footprinting by capillary electrophoresis.
    Wilson DO; Johnson P; McCord BR
    Electrophoresis; 2001 Jun; 22(10):1979-86. PubMed ID: 11465496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A recommended workflow for DNase I footprinting using a capillary electrophoresis genetic analyzer.
    Sivapragasam S; Pande A; Grove A
    Anal Biochem; 2015 Jul; 481():1-3. PubMed ID: 25908559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNase I footprinting.
    Carey MF; Peterson CL; Smale ST
    Cold Spring Harb Protoc; 2013 May; 2013(5):469-78. PubMed ID: 23637368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and biophysical and biological evaluation of a series of pyrrolobenzodiazepine-poly(N-methylpyrrole) conjugates.
    Wells G; Martin CR; Howard PW; Sands ZA; Laughton CA; Tiberghien A; Woo CK; Masterson LA; Stephenson MJ; Hartley JA; Jenkins TC; Shnyder SD; Loadman PM; Waring MJ; Thurston DE
    J Med Chem; 2006 Sep; 49(18):5442-61. PubMed ID: 16942018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of multiple-hit footprinting studies to characterize DNA conformational changes in protein-DNA complexes: application to DNA opening by Esigma70 RNA polymerase.
    Tsodikov OV; Craig ML; Saecker RM; Record MT
    J Mol Biol; 1998 Nov; 283(4):757-69. PubMed ID: 9790838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of a transcription factor-binding site by nuclease protection footprinting onto southwestern blots.
    Papavassiliou AG
    Methods Mol Biol; 2009; 543():201-18. PubMed ID: 19378168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range and highly sensitive DNase I footprinting by an automated infrared DNA sequencer.
    Machida M; Kamio H; Sorensen D
    Biotechniques; 1997 Aug; 23(2):300-3. PubMed ID: 9266087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo footprinting of the interaction of proteins with DNA and RNA.
    Grange T; Bertrand E; Espinás ML; Fromont-Racine M; Rigaud G; Roux J; Pictet R
    Methods; 1997 Feb; 11(2):151-63. PubMed ID: 8993027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-yield production and characterization of biologically active GST-tagged human topoisomerase IIα protein in insect cells for the development of a high-throughput assay.
    Singh PK; Chan PF; Hibbs MJ; Vazquez MJ; Segura DC; Thomas DA; Theobald AJ; Gallagher KT; Hassan NJ
    Protein Expr Purif; 2011 Apr; 76(2):165-72. PubMed ID: 20709174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNase I footprinting.
    Fox KR
    Methods Mol Biol; 1997; 90():1-22. PubMed ID: 9407524
    [No Abstract]   [Full Text] [Related]  

  • 20. Binding of polybenzamides to DNA: studies by DNase I and chlorambucil interference footprinting and comparison with Hoechst 33258.
    Turner PR; Ferguson LR; Denny WA
    Anticancer Drug Des; 1998 Dec; 13(8):941-54. PubMed ID: 10335268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.