These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17587061)

  • 1. Predicting body temperature and activity of adult Polyommatus icarus using neural network models under current and projected climate scenarios.
    Howe PD; Bryant SR; Shreeve TG
    Oecologia; 2007 Oct; 153(4):857-69. PubMed ID: 17587061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity.
    Kleckova I; Konvicka M; Klecka J
    J Therm Biol; 2014 Apr; 41():50-8. PubMed ID: 24679972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
    Braschler B; Hill JK
    J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Small Is Beautiful: Wing Colour Is Free from Thermoregulatory Constraint in the Small Lycaenid Butterfly, Polyommatus icarus.
    De Keyser R; Breuker CJ; Hails RS; Dennis RL; Shreeve TG
    PLoS One; 2015; 10(4):e0122623. PubMed ID: 25923738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facing the Heat: Thermoregulation and Behaviour of Lowland Species of a Cold-Dwelling Butterfly Genus, Erebia.
    Kleckova I; Klecka J
    PLoS One; 2016; 11(3):e0150393. PubMed ID: 27008409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.
    Radchuk V; Turlure C; Schtickzelle N
    J Anim Ecol; 2013 Jan; 82(1):275-85. PubMed ID: 22924795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional differences in thermoregulation between two European butterfly communities.
    Toro-Delgado E; Vila R; Talavera G; Turner EC; Hayes MP; Horrocks NPC; Bladon AJ
    J Anim Ecol; 2024 Feb; 93(2):183-195. PubMed ID: 38192015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate variability slows evolutionary responses of Colias butterflies to recent climate change.
    Kingsolver JG; Buckley LB
    Proc Biol Sci; 2015 Mar; 282(1802):. PubMed ID: 25631995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. North-South divide: contrasting impacts of climate change on crop yields in Scotland and England.
    Butterworth MH; Semenov MA; Barnes A; Moran D; West JS; Fitt BD
    J R Soc Interface; 2010 Jan; 7(42):123-30. PubMed ID: 19447817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin.
    Roy DB; Thomas JA
    Oecologia; 2003 Feb; 134(3):439-44. PubMed ID: 12647153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.
    Barbraud C; Rivalan P; Inchausti P; Nevoux M; Rolland V; Weimerskirch H
    J Anim Ecol; 2011 Jan; 80(1):89-100. PubMed ID: 20840607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends.
    Bladon AJ; Lewis M; Bladon EK; Buckton SJ; Corbett S; Ewing SR; Hayes MP; Hitchcock GE; Knock R; Lucas C; McVeigh A; Menéndez R; Walker JM; Fayle TM; Turner EC
    J Anim Ecol; 2020 Nov; 89(11):2440-2450. PubMed ID: 32969021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of urban expansion and a changing climate to decline of a butterfly fauna.
    Casner KL; Forister ML; O'Brien JM; Thorne J; Waetjen D; Shapiro AM
    Conserv Biol; 2014 Jun; 28(3):773-82. PubMed ID: 24527888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Take-off performance under optimal and suboptimal thermal conditions in the butterfly Pararge aegeria.
    Berwaerts K; Van Dyck H
    Oecologia; 2004 Nov; 141(3):536-45. PubMed ID: 15309609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.
    Kharouba HM; Vellend M
    J Anim Ecol; 2015 Sep; 84(5):1311-21. PubMed ID: 25823582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate effects on late-season flight times of Massachusetts butterflies.
    Zipf L; Williams EH; Primack RB; Stichter S
    Int J Biometeorol; 2017 Sep; 61(9):1667-1673. PubMed ID: 28382376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial trends in the sighting dates of British butterflies.
    Roy DB; Asher J
    Int J Biometeorol; 2003 Aug; 47(4):188-92. PubMed ID: 12695889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ; While GM; Beeton NJ; Wapstra E
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future projections for Mexican faunas under global climate change scenarios.
    Peterson AT; Ortega-Huerta MA; Bartley J; Sánchez-Cordero V; Soberón J; Buddemeier RH; Stockwell DR
    Nature; 2002 Apr; 416(6881):626-9. PubMed ID: 11948349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.