These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 17587137)

  • 61. HiResolution and conventional sound processing in the HiResolution bionic ear: using appropriate outcome measures to assess speech recognition ability.
    Koch DB; Osberger MJ; Segel P; Kessler D
    Audiol Neurootol; 2004; 9(4):214-23. PubMed ID: 15205549
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Use of a sigmoidal-shaped function for noise attenuation in cochlear implants.
    Hu Y; Loizou PC; Li N; Kasturi K
    J Acoust Soc Am; 2007 Oct; 122(4):EL128-34. PubMed ID: 17902741
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fundamental frequency discrimination and speech perception in noise in cochlear implant simulations.
    Carroll J; Zeng FG
    Hear Res; 2007 Sep; 231(1-2):42-53. PubMed ID: 17604581
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The resolution of complex spectral patterns by cochlear implant and normal-hearing listeners.
    Henry BA; Turner CW
    J Acoust Soc Am; 2003 May; 113(5):2861-73. PubMed ID: 12765402
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Effects of Static and Moving Spectral Ripple Sensitivity on Unaided and Aided Speech Perception in Noise.
    Miller CW; Bernstein JGW; Zhang X; Wu YH; Bentler RA; Tremblay K
    J Speech Lang Hear Res; 2018 Dec; 61(12):3113-3126. PubMed ID: 30515519
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Factors Affecting Outcomes in Cochlear Implant Recipients Implanted With a Perimodiolar Electrode Array Located in Scala Tympani.
    Holden LK; Firszt JB; Reeder RM; Uchanski RM; Dwyer NY; Holden TA
    Otol Neurotol; 2016 Dec; 37(10):1662-1668. PubMed ID: 27755365
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Computer-Based Connected-Text Training of Speech-in-Noise Perception for Cochlear Implant Users.
    Green T; Faulkner A; Rosen S
    Trends Hear; 2019; 23():2331216519843878. PubMed ID: 31010386
    [TBL] [Abstract][Full Text] [Related]  

  • 68. AzBio Speech Understanding Performance in Quiet and Noise in High Performing Cochlear Implant Users.
    Brant JA; Eliades SJ; Kaufman H; Chen J; Ruckenstein MJ
    Otol Neurotol; 2018 Jun; 39(5):571-575. PubMed ID: 29557842
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Objective assessment of spectral ripple discrimination in cochlear implant listeners using cortical evoked responses to an oddball paradigm.
    Lopez Valdes A; Mc Laughlin M; Viani L; Walshe P; Smith J; Zeng FG; Reilly RB
    PLoS One; 2014; 9(3):e90044. PubMed ID: 24599314
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spectral Ripple Discrimination in Normal-Hearing Infants.
    Horn DL; Won JH; Rubinstein JT; Werner LA
    Ear Hear; 2017; 38(2):212-222. PubMed ID: 27768611
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Distortion of Spectral Ripples Through Cochlear Implants Has Major Implications for Interpreting Performance Scores.
    Winn MB; O'Brien G
    Ear Hear; 2022; 43(3):764-772. PubMed ID: 34966157
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Phoneme Identification Test for Assessment of Spectral and Temporal Discrimination Skills in Children: Development, Normative Data, and Test-Retest Reliability Studies.
    Cameron S; Chong-White N; Mealings K; Beechey T; Dillon H; Young T
    J Am Acad Audiol; 2018 Feb; 29(2):135-150. PubMed ID: 29401061
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The effects of electrical field spatial spread and some cognitive factors on speech-in-noise performance of individual cochlear implant users-A computer model study.
    Jürgens T; Hohmann V; Büchner A; Nogueira W
    PLoS One; 2018; 13(4):e0193842. PubMed ID: 29652892
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improving performance in noise for hearing aids and cochlear implants using coherent modulation filtering.
    Won JH; Schimmel SM; Drennan WR; Souza PE; Atlas L; Rubinstein JT
    Hear Res; 2008 May; 239(1-2):1-11. PubMed ID: 18295993
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Take-Home Trial Comparing Fast Fourier Transformation-Based and Filter Bank-Based Cochlear Implant Speech Coding Strategies.
    de Jong MAM; Briaire JJ; Frijns JHM
    Biomed Res Int; 2017; 2017():7915042. PubMed ID: 29057265
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spectral and temporal analysis of simulated dead regions in cochlear implants.
    Won JH; Jones GL; Moon IJ; Rubinstein JT
    J Assoc Res Otolaryngol; 2015 Apr; 16(2):285-307. PubMed ID: 25740402
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evaluation and analysis of whispered speech for cochlear implant users: Gender identification and intelligibility.
    Hazrati O; Ali H; Hansen JH; Tobey E
    J Acoust Soc Am; 2015 Jul; 138(1):74-9. PubMed ID: 26233008
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Reception of environmental sounds through cochlear implants.
    Reed CM; Delhorne LA
    Ear Hear; 2005 Feb; 26(1):48-61. PubMed ID: 15692304
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Clinical evaluation of the Nucleus 6 cochlear implant system: performance improvements with SmartSound iQ.
    Mauger SJ; Warren CD; Knight MR; Goorevich M; Nel E
    Int J Audiol; 2014 Aug; 53(8):564-76. PubMed ID: 25005776
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Correlation between Auditory Spectral Resolution and Speech Perception in Children with Cochlear Implants.
    Jeddi Z; Lotfi Y; Moossavi A; Bakhshi E; Hashemi SB
    Iran J Med Sci; 2019 Sep; 44(5):382-389. PubMed ID: 31582862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.