BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17587225)

  • 1. Magnetic resonance imaging and T2 relaxometry of human median nerve at 7 Tesla.
    Gambarota G; Veltien A; Klomp D; Van Alfen N; Mulkern RV; Heerschap A
    Muscle Nerve; 2007 Sep; 36(3):368-73. PubMed ID: 17587225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR properties of human median nerve at 3 T: proton density, T1, T2, and magnetization transfer.
    Gambarota G; Mekle R; Mlynárik V; Krueger G
    J Magn Reson Imaging; 2009 Apr; 29(4):982-6. PubMed ID: 19306447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T2 relaxometry of human median nerve.
    Gambarota G
    Semin Musculoskelet Radiol; 2009 Mar; 13(1):24-8. PubMed ID: 19235669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo high-resolution MR imaging of the carpal tunnel at 8.0 tesla.
    Farooki S; Ashman CJ; Yu JS; Abduljalil A; Chakeres D
    Skeletal Radiol; 2002 Aug; 31(8):445-50. PubMed ID: 12172591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microneurography of human median nerve.
    Bilgen M; Heddings A; Al-Hafez B; Hasan W; McIff T; Toby B; Nudo R; Brooks WM
    J Magn Reson Imaging; 2005 Jun; 21(6):826-30. PubMed ID: 15906337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content.
    Marinelli NL; Haughton VM; Muñoz A; Anderson PA
    Spine (Phila Pa 1976); 2009 Mar; 34(5):520-4. PubMed ID: 19247172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T.
    Oh J; Han ET; Pelletier D; Nelson SJ
    Magn Reson Imaging; 2006 Jan; 24(1):33-43. PubMed ID: 16410176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T.
    Krug R; Stehling C; Kelley DA; Majumdar S; Link TM
    Invest Radiol; 2009 Sep; 44(9):613-8. PubMed ID: 19652609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of T1, T2, and magnetization transfer properties during embryonic development at 7 Tesla using the chicken model.
    Boss A; Oppitz M; Wehrl HF; Rossi C; Feuerstein M; Claussen CD; Drews U; Pichler BJ; Schick F
    J Magn Reson Imaging; 2008 Dec; 28(6):1510-4. PubMed ID: 19025957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution magnetic resonance imaging of triangular fibrocartilage complex lesions in acute wrist trauma: image quality at different field strengths.
    Stehling C; Bachmann R; Langer M; Nassenstein I; Heindel W; Vieth V
    J Comput Assist Tomogr; 2009; 33(4):579-83. PubMed ID: 19638854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative magnetic resonance imaging of subcutaneous adipose tissue.
    Gensanne D; Josse G; Theunis J; Lagarde JM; Vincensini D
    Skin Res Technol; 2009 Feb; 15(1):45-50. PubMed ID: 19152578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton T2 relaxation time of J-coupled cerebral metabolites in rat brain at 9.4 T.
    Xin L; Gambarota G; Mlynárik V; Gruetter R
    NMR Biomed; 2008 May; 21(4):396-401. PubMed ID: 17907262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T2, Carr-Purcell T2 and T1rho of fat and water as surrogate markers of trabecular bone structure.
    Lammentausta E; Silvast TS; Närväinen J; Jurvelin JS; Nieminen MT; Gröhn OH
    Phys Med Biol; 2008 Feb; 53(3):543-55. PubMed ID: 18199901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional ultrashort echo time imaging of solid polymers on a 3-Tesla whole-body MRI scanner.
    Springer F; Martirosian P; Schwenzer NF; Szimtenings M; Kreisler P; Claussen CD; Schick F
    Invest Radiol; 2008 Nov; 43(11):802-8. PubMed ID: 18923260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study.
    Kjaer L; Thomsen C; Henriksen O; Ring P; Stubgaard M; Pedersen EJ
    Acta Radiol; 1987; 28(3):345-51. PubMed ID: 2958044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative prognostic utilities of early quantitative magnetic resonance imaging spin-spin relaxometry and proton magnetic resonance spectroscopy in neonatal encephalopathy.
    Shanmugalingam S; Thornton JS; Iwata O; Bainbridge A; O'Brien FE; Priest AN; Ordidge RJ; Cady EB; Wyatt JS; Robertson NJ
    Pediatrics; 2006 Oct; 118(4):1467-77. PubMed ID: 17015537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution magnetic resonance imaging of the human median nerve.
    Heddings A; Bilgen M; Nudo R; Toby B; McIff T; Brooks W
    Neurorehabil Neural Repair; 2004 Jun; 18(2):80-7. PubMed ID: 15228803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining cervical ripeness and labor outcome: the efficacy of magnetic resonance T2 relaxation times.
    Pates JA; Zaretsky MV; Alexander JM; Babcock EE; McIntire DD; Twickler DM
    Obstet Gynecol; 2007 Feb; 109(2 Pt 1):326-30. PubMed ID: 17267832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance imaging of the cranial nerves in the posterior fossa: a comparative study of t2-weighted spin-echo sequences at 1.5 and 3.0 tesla.
    Fischbach F; Müller M; Bruhn H
    Acta Radiol; 2008 Apr; 49(3):358-63. PubMed ID: 18365827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.