BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17587225)

  • 21. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI.
    Barth M; Moser E
    Cell Mol Biol (Noisy-le-grand); 1997 Jul; 43(5):783-91. PubMed ID: 9298600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphologic and dynamic renal imaging with assessment of glomerular filtration rate in a pcy-mouse model using a clinical 3.0 Tesla scanner.
    Sadick M; Schock D; Kraenzlin B; Gretz N; Schoenberg SO; Michaely HJ
    Invest Radiol; 2009 Aug; 44(8):469-75. PubMed ID: 19465861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of biexponential relaxation processes by magnetic resonance imaging. A phantom study.
    Kjaer L; Thomsen C; Larsson HB; Henriksen O; Ring P
    Acta Radiol; 1988; 29(4):473-9. PubMed ID: 3408610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution/high-contrast MRI of human articular cartilage lesions.
    Othman SF; Li J; Abdullah O; Moinnes JJ; Magin RL; Muehleman C
    Acta Orthop; 2007 Aug; 78(4):536-46. PubMed ID: 17966009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system.
    Du J; Takahashi AM; Chung CB
    J Magn Reson Imaging; 2009 Feb; 29(2):412-21. PubMed ID: 19161197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early damage to lung tissue after irradiation detected by the magnetic resonance T2 relaxation time.
    Shioya S; Tsuji C; Kurita D; Katoh H; Tsuda M; Haida M; Kawana A; Ohta Y
    Radiat Res; 1997 Oct; 148(4):359-64. PubMed ID: 9339952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of J modulation on spin-echo acquisition and calculation of spin-spin relaxation time (T2) from the J-suppressed data set.
    Yaman A
    Physiol Chem Phys Med NMR; 2000; 32(1):75-81. PubMed ID: 10970050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast method for longitudinal relaxation time and water content mapping of the human brain on a clinical MR scanner.
    Kövér F; Schwarcz A; Pál J; Bogner P; Vajna T; Vadon G; Dóczi T
    Acta Neurochir (Wien); 2004 Dec; 146(12):1341-6; discussion 1346. PubMed ID: 15449146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The proton relaxation times in normal and neoplastic thyroid tissue. An in vitro study].
    Tregnaghi A; Lacognata C; Pellizzo MR; Muzzio PC; Coletta F
    Radiol Med; 1991 Nov; 82(5):613-6. PubMed ID: 1664116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic resonance study of virgin and explanted silicone breast prostheses. Can proton relaxation times be used to monitor their biostability?
    Dorne L; Stroman P; Rolland C; Auger M; Alikacem N; Bronskill M; Grondin P; King MW; Guidoin R
    ASAIO J; 1994; 40(3):M625-31. PubMed ID: 8555590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic resonance microneurography of rabbit sciatic nerve on a 1.5-T clinical MR system correlated with gross anatomy.
    Shen J; Wang HQ; Zhou CP; Liang BL
    Microsurgery; 2008; 28(1):32-6. PubMed ID: 17994593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical applications of quantitative T2 determination: a complementary MRI tool for routine diagnosis of suspected myelination disorders.
    Ding XQ; Wittkugel O; Goebell E; Förster AF; Grzyska U; Zeumer H; Fiehler J
    Eur J Paediatr Neurol; 2008 Jul; 12(4):298-308. PubMed ID: 17964834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo magnetic resonance imaging of the blue crab, Callinectes sapidus: effect of cadmium accumulation in tissues on proton relaxation properties.
    Brouwer M; Engel DW; Bonaventura J; Johnson GA
    J Exp Zool; 1992 Aug; 263(1):32-40. PubMed ID: 1645119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope.
    Frauenrath T; Hezel F; Heinrichs U; Kozerke S; Utting JF; Kob M; Butenweg C; Boesiger P; Niendorf T
    Invest Radiol; 2009 Sep; 44(9):539-47. PubMed ID: 19652614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of deflazacort on cardiac and sternocleidomastoid muscles in Duchenne muscular dystrophy: a magnetic resonance imaging study.
    Mavrogeni S; Papavasiliou A; Douskou M; Kolovou G; Papadopoulou E; Cokkinos DV
    Eur J Paediatr Neurol; 2009 Jan; 13(1):34-40. PubMed ID: 18406648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic resonance diffusion imaging detects structural damage in biological tissues upon hyperthermia.
    Cheng KH; Hernandez M
    Cancer Res; 1992 Nov; 52(21):6066-73. PubMed ID: 1394232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental nerve imaging at 1.5-T.
    Nolte I; Pham M; Bendszus M
    Methods; 2007 Sep; 43(1):21-8. PubMed ID: 17720560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity.
    Gomori JM; Grossman RI; Yu-Ip C; Asakura T
    J Comput Assist Tomogr; 1987; 11(4):684-90. PubMed ID: 3597895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clustering of atlas-defined cortical regions based on relaxation times and proton density.
    Aubert-Broche B; Grova C; Pike GB; Collins DL
    Neuroimage; 2009 Aug; 47(2):523-32. PubMed ID: 19426811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.