These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17587225)

  • 41. Diffusivity- and T2 imaging at 3 Tesla for the detection of degenerative changes in human-excised tissue with high resolution: atherosclerotic arteries.
    Berg A; Sailer J; Rand T; Moser E
    Invest Radiol; 2003 Jul; 38(7):452-9. PubMed ID: 12821860
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NMR proton T1 and T2 relaxation times from fresh, in vitro canine tissues at 5.1 MHz.
    Wolf GL; Conard B
    Physiol Chem Phys Med NMR; 1983; 15(1):19-22. PubMed ID: 6316378
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Imaging of the normal anatomy of the hand using high resolution magnetic resonance tomography and surface coils].
    Hinz A; Köhler D; Auffermann W; Langer M; Langer R
    Aktuelle Radiol; 1993 Mar; 3(2):84-9. PubMed ID: 8476956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intracerebral pH affects the T2 relaxation time of brain tissue.
    Schilling AM; Blankenburg FB; Bernarding J; Heidenreich JO; Wolf KJ
    Neuroradiology; 2002 Dec; 44(12):968-72. PubMed ID: 12483440
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnetic resonance imaging of lung tissue: influence of body positioning, breathing and oxygen inhalation on signal decay using multi-echo gradient-echo sequences.
    Boss A; Schaefer S; Martirosian P; Claussen CD; Schick F; Schaefer JF
    Invest Radiol; 2008 Jun; 43(6):433-8. PubMed ID: 18496049
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-resolution MRI of the human parotid gland and duct at 7 Tesla.
    Kraff O; Theysohn JM; Maderwald S; Kokulinsky PC; Dogan Z; Kerem A; Kruszona S; Ladd ME; Gizewski ER; Ladd SC
    Invest Radiol; 2009 Sep; 44(9):518-24. PubMed ID: 19652615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spin echo SPI methods for quantitative analysis of fluids in porous media.
    Li L; Han H; Balcom BJ
    J Magn Reson; 2009 Jun; 198(2):252-60. PubMed ID: 19307140
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fat-suppressed T2* sequences for routine 3.0-tesla lumbar spine magnetic resonance imaging: a preliminary report.
    McKinney AM; Gadani S; Palmer CS; Vidarsson L
    Acta Radiol; 2008 Sep; 49(7):790-4. PubMed ID: 18608016
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Relaxation times and proton density of the healthy kidney and its lesions and graphic view of T2 decay].
    Uhlenbrock D; Bachus R; Lehmann B; Steiner G
    Digitale Bilddiagn; 1987 Sep; 7(3):125-33. PubMed ID: 3677549
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increasing the speed of relaxometry-based compartmental analysis experiments in STEAM spectroscopy.
    Knight-Scott J; Dunham SA; Shanbhag DD
    J Magn Reson; 2005 Mar; 173(1):169-74. PubMed ID: 15705525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-point magnetic resonance imaging study of water adsorption in pellets of zeolite 4A.
    Prado PJ; Balcom BJ; Jama M
    J Magn Reson; 1999 Mar; 137(1):59-66. PubMed ID: 10053133
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microimaging of hairless rat skin by magnetic resonance at 900 MHz.
    Sharma R
    Magn Reson Imaging; 2009 Feb; 27(2):240-55. PubMed ID: 18775619
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The observation and quantification of oil migration and binding in sediments using T2 magnetic resonance imaging.
    Reeves AD; Chudek JA
    Magn Reson Imaging; 2007 Jan; 25(1):136-43. PubMed ID: 17222725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Brain adaptation to water loading in rabbits as assessed by NMR relaxometry.
    Vajda Z; Berényi E; Bogner P; Repa I; Dóczi T; Sulyok E
    Pediatr Res; 1999 Oct; 46(4):450-4. PubMed ID: 10509367
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Voxel-based iterative sensitivity (VBIS) analysis: methods and a validation of intensity scaling for T2-weighted imaging of hippocampal sclerosis.
    Abbott DF; Pell GS; Pardoe H; Jackson GD
    Neuroimage; 2009 Feb; 44(3):812-9. PubMed ID: 18996207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo multiecho T2 relaxation measurements using variable TR to decrease scan time.
    Laule C; Kolind SH; Bjarnason TA; Li DK; MacKay AL
    Magn Reson Imaging; 2007 Jul; 25(6):834-9. PubMed ID: 17482413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dependence of transverse relaxation time T2 of biologic tissues on the interpulse delay time in Carr-Purcell-Meiboom-Gill (CPMG) measurements.
    Shioya S; Kurita D; Haida M; Fukuzaki M; Tanigaki T; Kutsuzawa T; Ohta Y
    Tokai J Exp Clin Med; 1997 May; 22(2):27-31. PubMed ID: 9608628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of oxygen and carbogen breathing on renal oxygenation measured by T2*-weighted imaging at 3.0 T.
    Boss A; Martirosian P; Jehs MC; Dietz K; Alber M; Rossi C; Claussen CD; Schick F
    NMR Biomed; 2009 Jul; 22(6):638-45. PubMed ID: 19306339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. T2 and T2* quantification using optimal B1 image reconstruction for multicoil arrays.
    Graves MJ; Emmens D; Lejay H; Hariharan H; Polzin J; Lomas DJ
    J Magn Reson Imaging; 2008 Jul; 28(1):278-81. PubMed ID: 18581394
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diffusion generated T1 and T2 contrast.
    Kaufmann I; Seiberlich N; Haase A; Jakob P
    J Magn Reson; 2008 May; 192(1):139-50. PubMed ID: 18316216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.